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Abstract

The fundamental concept of magnetically confined nuclear fusion devices is the
magnetohydrodynamic (MHD) equilibrium: the pressure gradient due to highly
energetic charged particles is balanced by the Lorenz force due to strong magnetic
fields. Hence, numerical methods for MHD equilibria are also fundamental for fusion
engineering applications. We rely here on a finite element method on composite
meshes for the simulation of axisymmetric equilibria in tokamaks, torus-shaped
nuclear fusion devices. One mesh with Cartesian quadrilaterals covers the domain
accessible by the plasma and one mesh with triangles discretizes the region outside
the chamber. The two meshes overlap in a narrow region. This approach gives the
flexibility to achieve easily and at low cost higher order regularity for the
approximation of the principal unknown, the poloidal magnetic flux, while preserving
accurate meshing of the geometric details in the exterior. We show that higher order
regularity allows to formulate appropriate optimal control problems that help to find
a special type of equilibria, called snowflake equilibria, that are a very promising
concept to mitigate high heat loads due to plasma escaping particles.
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1 Introduction

The possibility of using composite meshes in finite element (FE) simulations of industrial
problems is a recurrent topic [8, 12, 28, 29, 33]. Composite meshes are involved as soon
as the global discretization of a partial differential equation combines discretizations on
local (overlapping or non-overlapping) subdomains, each suitably triangulated by non-
matching grids. The reason for using composite meshes are various: fitting the geometry
or the local smoothness of the solution, resolving multiple scales in regions with irregular
data, using fast solvers on structured grids or a divide-and-conquer/domain decomposi-
tion approach to very large problems on parallel machines.

In the present case, we are looking for a simple and practical approach to introduce
in certain parts of the computational domain FE functions that are not only continuous,
but have also first order, second order or higher order continuous derivatives. In general
it is very difficult to introduce FE spaces over simplicial unstructured meshes with such

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


https://doi.org/10.1186/s13362-018-0050-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13362-018-0050-7&domain=pdf
mailto:frapetti@unice.fr

Heumann et al. Journal of Mathematics in Industry (2018) 8:8 Page 2 of 24

properties. On the other hand, if we work with Cartesian meshes this becomes very simple.
It is sufficient to use tensor products of spline spaces with sufficiently high regularity. So,
as it is naive to expect that technical devices can be entirely triangulated with Cartesian
meshes, we introduce composite meshes involving Cartesian meshes in those subdomains
where we want high regular FE representations and triangular unstructured meshes in
those subdomains where we want conformity with the geometry.

The industrial application we consider concerns the free-boundary plasma equilibrium
in tokamaks for nuclear fusion [3], which derives from the magnetohydrodynamic (MHD)
equilibrium, described by the force balance and Maxwell’s equations in the eddy-current
approximation. Nuclear fusion is a highly exothermic reaction in which two light atomic
nuclei fuse to form a heavier nucleus. The peaceful use of such reactions for energy pro-
duction on earth is a multinational research effort with high impact on the long-term
perspective of energy production and consumption. The most promising technology to
achieve this goal is currently the tokamak, a torus shaped reactor that uses strong mag-
netic fields to confine plasma and to achieve the extreme conditions to start the fusion
reaction. The upcoming ITER (International Thermonuclear Experimental Reactor) toka-
mak, jointly build by China, Europe, India, Russia, South Korea and USA, will be the largest
magnetic confinement experiment. It aims at demonstrating the principle of producing
more energy from the fusion process than is used to initiate it, something that has not yet
been achieved in any fusion reactor. Achieving this dream of creating a small sun on earth,
that provides an almost endless amount of clean and sustainable energy, is a main moti-
vation of this joint research work. The various open problems require interdisciplinary
research and are a steady source of interesting and challenging questions, requiring also a
high expertise in the field of applied and computational mathematics.

By symmetry considerations the free-boundary plasma equilibrium problem can be re-
duced to a scalar semi-linear elliptic one for the flux of the poloidal magnetic field (see
Sect. 2.1 for details and references or [3, Sect. 1.2]). As the magnetic field and the current
density are tangential to the level sets of the poloidal flux, the precise calculation of the
level set distribution for the poloidal flux is fundamental in tokamak science. Hence, it is
important to have good approximations not only of the poloidal magnetic flux but also of
its derivatives.

In Fig. 1 we show a sketch of the cross section of a tokamak. It contains the geometri-
cal details such as coils, passive structures and the iron core, that need to be accurately
resolved by a triangulation. A peculiarity of the free-boundary plasma equilibrium prob-
lem is the unknown plasma domain, that is implicitly given as the domain that is bounded
by the largest contour line of the poloidal flux that it not intersected by the limiter (see
Fig. 2). Depending on the combination of coil currents, the plasma boundary, a contour
line of the poloidal flux, either touches the limiter, the so-called limiter configuration, or
is fully detached from the limiter. The latter is called divertor configuration or X-point
configuration as the plasma boundary contains a saddle point of the poloidal field. In the
very early tokamak devices the plasma was always attached to the limiter, while later the
focus shifted towards devices that create free standing plasmas that are completely de-
tached from material that would have to resist extremely high temperatures, otherwise.
This allows to maintain plasmas at much higher temperatures. But even though a direct
contact of plasma and material is avoided there are nevertheless high temperature heat
loads on some parts of the material inside the tokamak. Particles that escape from the
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Figure 2 Sketch for characteristic plasma shapes. Contour lines (black) of the poloidal flux and plasma
domain (red): The plasma boundary either (left) touches the limiter (gray) or the plasma is enclosed by a flux
contour line (middle and right) that passes through a saddle point. This can be a non-degenerated (middle) in
the X-point configuration or degenerated (right) saddle point in the snowflake configuration

plasma hit the limiter at places where the limiter intersects with the contour lines of the
poloidal flux. But since the toroidal component of the particle velocity is very large, the
impact place is in the vicinity of the X-point. This may damage the device since the parti-
cles deposit their significant energy on a relatively small area leading to unacceptably high
heat flux densities. To mitigate the heat flux impact several strategies are proposed. One of
these strategies aims at the exploration of the so-called snowflake configuration [30, 31].
A snowflake configuration (see Fig. 2 right) is obtained when there is a point where not
only the gradient of the poloidal flux vanishes but also its second order derivatives. This
second condition implies that contour line through this point has more than four different
branches. It thus results that the heat flux load is distributed over a larger impact area.
In [21] we introduced a FE method on composite meshes (see Fig. 3) for free-boundary
plasma equilibrium problems and showed that the numerical calculation of such equilibria
benefits from approximating the poloidal flux through some higher regular FE functions
in the interior of the limiter. In the present paper we extend our previous work to de-
termine coil current distributions that create snowflake configurations. We formulate this
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Figure 3 Composite meshes. Top: detail view for the WEST tokamak, with the iron core (green), the passive
structures (red), the various coils (light blue) and the domain bounded by the limiter (white). Down: the
composite meshes for the WEST tokamak

task as optimal control problem that is discretized with higher regular FE functions on the
composite meshes. While FE methods on composite meshes are widely used in practice,
their theoretical foundation is fairly limited in the literature. Therefore, we report here
also extensive experimental convergence results that provide reassuring foundations for
this application.

The outline is the following: The Sects. 2 and 3 deal with the free-boundary plasma
equilibrium problem and the numerical methods, respectively. We present the model
(Sect. 2.1), the free-boundary equilibrium problem, and its role for the operation of toka-
maks (Sect. 2.2). In Sect. 3.1 we recall the classical mortar element method (MEM) for

overlapping meshes and introduce a modified method (MEM-M) that simplifies the im-



Heumann et al. Journal of Mathematics in Industry (2018) 8:8 Page 5 of 24

plementation by avoiding integrals over cut elements. Next, in Sect. 3.2 we present the
MEM-M Galerkin formulation for the plasma equilibrium problem. The related optimal
control problem for tuning plasma equilibria appears in Sect. 3.3. We explain how an exist-
ing implementation of Newton’s method for the free-boundary equilibrium problem can
be easily extended to solve efficiently the corresponding optimal control problems. The
section on results, Sect. 4, starts with a validation of the convergence of the MEM and
MEM-M and ends with a case study for finding snowflake configurations for the future

tokamak CFETR. Sect. 5 gives a brief summary and draws the conclusions.

2 Formulation of the problem
The essential equations for describing plasma equilibrium in a tokamak are force balance,

the solenoidal condition and Ampere’s law that read respectively
. 1
gradp =] x B, divB =0, curl —B =7, (1)
7

where p is the plasma kinetic pressure, B is the magnetic induction, J is the current density
and u the magnetic permeability. The magnetodydrodymic equilibrium (1) is a fundamen-
tal concept for nuclear fusion and we refer to standard text books, e.g. [3, 13, 15, 16, 35]
and [22] for the details. Nevertheless, to keep this contribution concise, we give in the

subsequent section a brief introduction following the lines of [21, Sect. 2].

2.1 The free-boundary plasma equilibrium problem
Tokamaks are predominantly axial symmetric devices, hence it is convenient to formu-
late (1) in a cylindrical coordinate system (r,¢,z) in order to consider only a section
at ¢ = constant of the tokamak, generally referred to as poloidal section. Working in a
poloidal section, the scalar field p does not depend on the angle ¢, thus Vp belongs to
the poloidal (r,z)-plane. We introduce H = [0, 00] x [-00, 00], the positive half plane, to
denote the poloidal plane that contains the tokamak centered at the origin. The classical
primal unknowns for toroidal plasma equilibria described by (1) are the poloidal magnetic
flux = Y (r,z), the pressure p and the diamagnetic function f. The poloidal magnetic flux
Y := rA-e, is the scaled toroidal component (¢-component) of the magnetic vector poten-
tial A, such that B = curl A, and e, the unit vector for the ¢ coordinate. The diamagnetic
function f = rB - e, is the scaled toroidal component of the magnetic field B. It can be
shown that both the pressure p and the diamagnetic function f are constant on ¥ contour
lines, i.e. p = p(¥) and f = f(¢).

Force balance, the solenoidal condition and Ampere’s law in (1) yield, in axisymmetric

configuration, the following set of equations for the flux v (r, z):

W)+ o (W) in P);

< 1 ) 1,'/|C,‘| inCi,l <i<M;

V(=) - |

I’L[W]r ]S 1n S, (2)
0 elsewhere in H,

¥(0,2) = 0; lim  (r,z)=0;

(2 [l —+o00
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Figure 4 Poloidal section of the tokamaks ITER (left), WEST (middle) and HL-2M (right). ITER, the International
Thermonuclear Experimental Reactor, is currently build in Cadarache, France and planned to be operational in
2015. WEST, the Tungsten (W) Environment in Steady-state Tokamak, is the remodeled Tore Supra tokamak of
the CEA, also located in Cadarache. Tora Supra was operational from 1988-2010 and experiments with WEST
started in 2017. HL-2M is a modification of HL-2A, a tokamak in Chengdu, China operational since 2001

where V is the gradient in the half plane H, I; is the total current (in At, Ampére turns) in
the ith coil C; C H and u is a functional of v that reads

2 .
pee(4%) in F,

o elsewhere,

nly] = ®3)

with o the constant magnetic permeability of vacuum and pig. the non-linear magnetic
permeability of iron. S is the domain of axisymmetric passive structures where a cur-
rent density js is prescribed. The plasma domain P(y) is an unknown, which depends
non-linearly on the magnetic flux v: P(y) is a functional of the poloidal flux ¥. The
different characteristic shapes of P(y) are illustrated in Fig. 2: the boundary of P(y)
either touches the boundary of £ (limiter configuration) or the boundary contains one
or more saddle points of ¢ (divertor configuration). The saddle points of v, denoted by
(rx,zx)=(rx(¥), zx(¥)), are called X-points of . The plasma domain P(y) is the largest
subdomain of £ bounded by a closed y-contour line in £ and containing the magnetic
axis (max»Zmax)- The magnetic axis is the point (Fmax Zmax) = ("max(¥), Zmax(¥)), where
¥ has its global maximum in L. For convenience, we introduce also the coordinates
("bdps Zbdp) = (Tbdp(¥), Zbap(¥)) of the point that determines the plasma boundary. Note
that (rbap, zbap) is either an X-point of ¥ or the contact point with the limiter 9£. The
Fig. 4 presents the actual geometric setting of 3 different tokamaks showing the big vari-
ety of designs.

The equation (2) in the plasma domain is the celebrated Grad-Shafranov-Schliiter
equation [17, 25, 32]. The domain of p’ and ff’ is the interval [Ypap, ¥max] With the scalar
values ¥max and Ypqp being the flux values at the magnetic axis and at the boundary of the

plasma:

Ymax[¥] := 1;[/(Vmax[lplf]’Zmax[w])f
Ubdp[W] := ¥ (roap V], Zbap[¥]).
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The two functions p’ and ff' and the currents /; in the coils are not determined by the
model (2) and have to be supplied as data. Since the domain of p’ and ff’ depends on the
poloidal flux itself, it is more practical to supply these profiles as functions of the normal-
ized poloidal flux ¥n(r, z):

_ 1#(7”;2) - 1ﬁmax[w]

- 'Qlfbdp [1[[] - wmax[W] ' (5)

wN(rr Z)

These two functions, subsequently termed S,y and Sy, have, independently of v, a fixed
domain [0, 1]. They are usually given as piecewise polynomial functions. Another frequent

a priori model is

B « «

SyW)=—(1-v)",  Sp) == Bror(l-vg)", ©)
0

with 7y the major radius (in meters) of the vacuum chamber and «, 8, y € R given param-

eters. We refer to [26] for a physical interpretation of these parameters. The parameter

B is related to the poloidal beta [3, p. 15], whereas « and y describe the peakage of the

current profile.

The total plasma current given by

a / ' (r,2)
b= A(¢)k(rp (Wina)+ Lo )drdz

is an important quantity. In many cases one prefers to find solutions to the free-boundary
equilibrium problem (2) where I, has a predefined value. Hence it is common to scale S,/
and Sy by an unknown coefficient A € R such that:

/ A(rSp/(wN(r, z)) + M) drdz =1,.
PW) Hor

2.2 The plasma equilibrium and tokamak experiments

Computing plasma equilibria, the solutions to (2), is a central topic in tokamak fusion sci-
ence. This is essential for simulations with elaborated high-dimensional magnetohydro-
dynamic models but also for experimenters that need to control real tokamak reactors.
They need to compute a huge amount of equilibria to set up discharge scenarios, to study
breakdowns and disruptions, or to design the layout of new machines. The computational
challenges for numerical codes for such free-boundary equilibrium problems are a prob-
lem setting in an unbounded domain with non-linearities due the current density profile
in the unknown plasma domain and the non-linear magnetic permeability if the reactor
has ferromagnetic structures. Devising stable iterative schemes is known to be very tricky
[27], in particular for computing physical unstable equilibria. The combination of Galerkin
methods and Newton-type iterations that were first introduced in [4] are among the most
successful approaches to such type of free-boundary problems. Computing derivatives of
the plasma domain has similarities with shape calculus. We refer to [20] for details and the
latest improvements and extensions of this approach. In Figs. 5, 6 and 7 we show a couple
of representative examples for such equilibrium calculations that are based on a standard
Galerkin method with lowest order Lagrangian finite elements on triangular meshes as
described in [4] or [20] and implemented in the MATLAB/Octave library FEEQS.M.?
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Figure 5 Example WEST and ITER: Contour Lines. Contour lines of the magnetic flux ¥ for WEST (left) and
ITER (right). The location (rmax(¥), Zmax(¥)) of the maximum of v is indicated with a green circle. The location
(rx, zx) of the discrete saddle points of ¥ is indicated by black circles. The magenta line indicates the contour
line that contains the plasma boundary

Figure 6 Example WEST and ITER, Flux and Current Density. Pseudo-color plot of the magnetic flux ¥ and
the plasma current density for two different cases: WEST (left) and ITER (right)

In order to prepare experiments on each machine, it is a routine almost daily work, to
compute not only the magnetic flux for a certain given set of coil currents, but also to
determine coil currents that create a plasma equilibrium with certain desired properties.
Such properties can be for example the shape of the plasma domain, the position of the X-
point or the distribution of the plasma current density. It is very convenient to formulate
such tasks as inverse or optimal control problem in introducing objective functionals that
encode the design goals. A common choice would be the quadratic functional

Nesi

C(llf) = Z (1//(71" Zi» t) - lﬁ(ro»Zo: t))zv

i=1

that would help to find an plasma equilibrium that has constant v values on Ngeg; + 1 given
points (r;,z;). However, from the definition of the equilibrium problem it is clear that the
stationary points of the magnetic flux ¥ have a very important role and it would be very
beneficial to formulate objective functionals for these stationary points. Moreover, the
location of the X-point has a big influence, where the extremely hot impurities released
from the plasma core hit the walls of the reactor. Very recently it was discovered that the
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Figure 7 Example HL-2M. Contour lines of the magnetic flux v for three different configuration of HL-2M.
The location (fmax(¥), Zmax (¥)) of the maximum of v is indicated with a green circle. The location (rx, zx) of
the discrete saddle points of ¥ is indicated by black circles. The magenta line indicates the contour line that
contains the plasma boundary

so-called snowflake configuration, with degenerated X-points or with many X-points close
to each other (see Fig. 7) can have very positive effects for the heat load mitigation, and
hence, engineers are interested in preparing tokamak scenarios with such configurations.

With the current approaches it is not obvious how to formulate objective functionals
for such tasks. The gradients or Hessians of the Galerkin approximation of ¢ are non-
smooth across element boundaries. Point evaluations of these gradients and Hessians are
not well defined. Therefore, we prefer to work with higher order regular Galerkin methods.
As this is easy with Cartesian meshes, we are interested in combining Cartesian meshes
covering the burning chamber with triangle meshes covering the remaining parts of the

computational domain.

3 Numerical methods
To simplify the presentation of the optimal control formulation and the main ingredients
for a implementation we focus first on the details of the Mortar Element Method. To keep

the discussion concise we elaborate the MEM for a linear elliptic problem.

3.1 A mortar element method (MEM) with overlapping meshes
To focus on the main idea we consider the following Poisson problem for the unknown
in the bounded domain € C R” with boundary I' = 9€2:

-V. (DVlﬁ) =f in2 and Iﬁ'|3Q = Ipo inl, (7)

where V (resp., V-) is the gradient (resp., divergence) operator in R” and D(x) € R positive,
for any x € Q. The right-hand side f and the Dirichlet data v/, are given. Let L2(2), be
the functional space of measurable functions on 2 that are square integrable in € and
HYQ) = {u € L2(Q), Vu € L*(Q)?} the Hilbert space endowed with the norm ||u||f{1m) =
llull?, + |u|12_[1(9) where |u|f_[1(9) = [|[Vul%. Let Q" C Q be a subdomain with Q"N T =@
and Q% = Q \ Q™ the complement of Q™ in Q. Further, the boundary of @™, y := 9Q™", is

the interface between Q and Qi". To formulate (7) as a variational problem in a domain
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decomposition framework, let us introduce the functional space
Hy = {(v,w) e H'(Q%) x H'(Q™),vir =g, v, =wy, }.

Then, the weak formulation of (7) is: Find (¢, ¥'") € H.y, s.t. for all (v,w) € Ho

/ DX)Vy(x) - Vy(x) dx + / D)V (x) - Vw(x) dx
QCX Qlﬂ

=/ Fx)v(x) dx+/. Fx)w(x) dx. (8)
QEX an

We wish to introduce different types of meshes 7% and 7™ in the two subdomains Q%
and Q. To achieve a maximum of flexibility we do not expect the meshes 7 and 7" to
be conforming with Q% and ™. More precisely, we denote by Q* and Q" the domains
covered by the mesh elements of 7 and 7", respectively, and we only require that Q% C
Q¥ CQ, I CI and Q" C QI" C Q. Hence the approximation of (8) enters into the
framework of overlapping domain decomposition methods. Let y® = 9Q* \ I' and y™ =
92" be the two boundaries of Q¢ and QI in © that replace the interface y. Then we
introduce the space

Ve = {(V: W) e V™ x Vm, Vir = l_[Dirg, Vjyex = HeXW:W‘yin — l—[inv}’

where V* and V™ are H'(22$*) and H'(Q") conforming FE spaces defined over 7 and
7. The operators ITP¥, T1** and 1" are projections onto the Dirichlet trace spaces V. =
trp V&, Vo= trj e VO and VI := tr,in V. The MEM,; with overlapping domains [1, 6,
23] applied to (8) reads: Find (¥, ') € V, such that

a (Yo, v) +a (Y™™ w) = £X(F,v) + €1 (f,w) Vv, w) € W, ©)

where

alc‘f)‘éf(lp,v) = / D)V (x) - Vi(x) dx — / coefD(x)Vr(x) - Vi(x) dx,
Qloc Q

ex in
Y

loc - _ £
= [ WCIOLS [ coetriounax,

in
Qh ﬁQh

for loc = ex (resp., loc = in) and coef = s (resp., coef = £), with coef € [0, 1]. Optimal con-
vergence results are available when s + ¢ = 1 and I1%, T1™", are the L? projections onto
tr) ex V¥, tr),in yin, respectively [1, 6]. However, two very restrictive disadvantages occur
with the formulation (9):

1. Assembling of the stiffness matrices associated to a®(-,-) and al"(-, -) involves
products of basis functions defined on different meshes. Similarly, assembling of the
load vectors corresponding to £X(f, -) and £(f, -) involves integration over
intersections of elements from different meshes.

2. The stability of MEM;, requires the projections I1%* and IT™" to be stable in H 3. The
obvious choice of L? projections involves again surface integrals of products of basis

functions defined on different meshes.
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In the following we will introduce two mortar-like mappings different from the stan-
dard L? projection, that allow to choose s = £ = 0 in (9) and hence avoid the expensive
assembling of the stiffness matrix for basis functions on two different meshes.

We recall that the FE spaces V** and V™™ can be represented as direct sums V™ =
V& @ EVSX and V" = V' @ EV.? where V¥ = trjyex V™ and V) = tr),in V'™ are the ear-
lier introduced trace spaces of V** and V'™ and E is the trivial extension operator. Let us
introduce two mappings 15y for ™" = Y+ g, with y* € VI, ¢t € VI and H}"t/fe"
for Y = Y& + 7%, with 5% € Vi, ¢)* € V. The mapping I"I;x is defined as:

H;xwin = Hex(w}i/n + \Ifin),
where W" € ViM such that
ag (W™, w) = £g'(f, w) —ag (¥, w)  Ywe VM,

and T1* is either the L2-projection or standard nodal interpolation operator onto V¥ The
mapping H}" is defined analogously. We then introduce the space

Ver = {(,w) € V= x VM yp = TTPVg, vy ex = I w, w)in = v},

and obtain the following modified version of the MEM for overlapping meshes: Find
(¥, ¥™") € Vy, s such that

al (v, v) +ag (¥ w) = €55 (f,v) + €3 (frw) V(v w) € Vo (10)

A similar approach with the lowest order FE spaces has been proposed in [9, 10] in the

" since we

o

context of non-destructive testing. The auxiliary variable W'" is equal to
have both

ag (™, w) + ag‘(lﬁ;/", w) =L5(f,w) YweVr
and

ag (v w) +ag (Vi w) = €5 (frw) Ywe V.
Likewise the auxiliary variable W is equal to ¥¢*. Hence it is easy to see that (10) is equiv-
alent to the following formulation. Find (¥, ¢™) € V* x V", ¢ = TP"g such that:

ag (v, v) +ag (W™ w) = €55(F,v) + €5 (f,w) V(v w) € VX x VI, yir .,

, , , (11)

e
which is similar to the numerical zoom formulation in [19], where both the spaces V** and
V" are defined over triangular meshes instead. This form of the modified MEM was also
the starting point in [21]. When I1® and ITI" are interpolation operators and V* and V'
are lowest order Lagrangian FE spaces on triangular meshes we can recall an optimal con-
vergence result from [24, Theorem 1] for the error in the L*°-norm, under the assumption
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Figure 8 Setting for Validation of MEM. We may choose Qij“ to have a minimal overlap with fo (left), that is
y® is contained in the layer of elements of 7™ which define y'. Otherwise, we say that Qi has a large
overlap with Q* (right)

that discrete maximums principles and a decay condition for the numerical solution away
from the boundary (see [24, p. 199]) hold. A similar result was established earlier in [7]
(see also [14]) for finite difference schemes on overlapping uniform (Cartesian) meshes.
Generalizing such results to more general meshes, combinations of triangular and uni-
form meshes, higher order FE methods or less restrictive conditions is an open problem.
This is nevertheless very crucial as in many cases discrete maximums principles will not
hold.

3.2 MEM-M Galerkin formulation for the equilibrium problem

To adapt to the notation from Sect. 3.1 we introduce x := (x,, x,) := (7, z). Next, we choose a
semi-circle I' of radius pr > 0 surrounding the iron domain F and the coil domains C;. Our
computational domain  C H is the half circle domain with the boundary 92 = I" U Ty,
where I'g := {(0,x;), —pr <%, < pr}. The exterior domain Q, that will be covered by a tri-
angular mesh, is the complement of the limiter-bounded domain £ in ©: Q= Q\ L. The
interior domain Q" is the limiter-bounded domain £ (see Figs. 4 and 8). We arrive at the
following MEM-M Galerkin formulation of the non-linear plasma equilibrium problem
(2): Find 1 € Rand (¢, ™) € V™ x V™, ¢ = 0 such that:

dx + c(wex,v)

/ Vy(x) - Vi(x)
SZZX I‘L[wex]xr

M
I
= E / ZV(X) dx Vve st, VIrg = 0,
—~Je, ICil

/ Vi (x) - Vw(x) dx
Qin HoXr

- / A (x,sp/ (V™) + M)w(x) dx=0 VYweVn, (12)
p(l//in) HoXr

/ | A<xr5p/(win(x)) N M) dx =1,
PE™)

HoXr
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/ P (x) ds(x) — / Moy (e s =0 V& € V%,
yex yex

/ Yin(x) x (x) ds(x) — / [Ty (x) x (x) ds(x) = 0 V)(GV“‘.
ym

The bilinear form c(, ) [2, 11, 18] takes into account the boundary conditions at infinity

using Greens functions of the operator -V - ( V(). It is defined as follows

_ 1 / XN (X)E (x) ds(x)
o

v [ 00 ) Qe e - £09) st sty 13)
with
B k(x,y) 2—k(x,y)2
oy = (2 Toktn, yr L koY) ~ K (kG y))),

1/1 1 1
Nx)=—(—+—-—) and 8r=,/a2+ (or £x,)2
x\8, - pr

r
and

4.y,
(X +9)% + (0, = 92)%

K (x, y) =

K (k) and E(k) are the complete elliptic integrals of the first and second kind respectively.

The MEM-M Galerkin formulation (12) is similar to the formulation in [21] with the
difference that we treat here the scaling parameter A as an unknown in order to match with
a prescribed total plasma current ,. Working here with the free-boundary equilibrium
problem with fixed plasma current is due to the fact that in most applications the total
plasma current J, will be a prescribed quantity.

We want to stress that an implementation of the MEM-M Galerkin formulation (12) re-
quires quadrature rules for the approximation of the integrals. Moreover, since the prob-
lem is non-linear we also need an iteration scheme. It is the non-linearity due to the un-
known plasma domain P (1) that makes these steps non-standard, and we refer to [3, 20]
for the details for FE spaces over triangular meshes. The case of FE over Cartesian meshes
is presented in [21, Sect. 4.4], and we mention here only that we use a Newton method
for the fully discretized system as opposed to a discretization of the Newton method for
the weak formulation. In many cases these two approaches are identical, but in the free-
boundary setting it makes a difference. The difference is not too important for finding
approximate solutions of (12) but it is essential for the optimal control formulation in the
following section.

Let y** and y'" represent the vector of the values of degrees of freedom of 1 € V** and
¥" € V", Then we have the decomposition y*™ = (y* »Yy") and yn = (yit ,yy) where y&
(resp., y* ) and Yy (resp., Y, ) are the degrees of freedom in V (resp., V") and 2% (resp.,
V). Further let u represent the vector of coil currents. The weak formulation (12) yields
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Algorithm 1 Constrained optimization as modification (magenta) of Newtons method

for the constraints.

1. Ay« 1,y y% Au+ 1, u+u

2: while ||Ay]|/|ly|l > tol, || Aul|/[|u] > tol do

30 (Ay,Y) « —(by(y,u)) " (b(y,u),bu(y,u))
& me BI(w) + YTCI(y) + YT Cyy (y)Ay

5: M <+ Ruu(u) + Y>"C,'yy(y)Y

6: Au+ —Mm

7.

8

9

y <~ y+Ay+YAu
: u<+ u+ Au
: end while

the following non-linear algebraic system:

dex (yzx’ y;x’ u) — 0’

din (yicn’yi;’ )\') — 0’

d'f"c(yO ,ym 1) =0, (14)
ex Pexym + Pexyin =0

Yy + POy + Py =0,

where d*(yg, y$, u) = 0, d™(y", ¥}, &) = 0 and d**(y, y'*, ) = O are the discretization of
the first, second and third lines of (12). P and P (resp., PI" and Pi)f‘) are the discretiza-
tion of the projection in the fourth (resp., fifth) line of (12). Combining the unknowns

Y, ¥S v yit and A in one vector y := (Y&, yS, yi', yi, 1) we can recast (14) in the form

d*(ysh v, w)
yO£ + PEryin 4 Peryin
0=b(y,u):= d“‘(vo SYyhA) . (15)
P‘“yo + Pinye
dPC( Yo ,Yy,)\)

that will be very convenient in the following section. The Newton iterations for (15) (see
Algorithm 1) require the implementation of the derivative by (y, u), which is already avail-

able due to previous efforts in [21, Sect. 4.5].

3.3 Theinverse problem for tuning plasma equilibria
Combining the discretized free-boundary plasma equilibrium problem (12) with a dis-
cretized objective functional C(y) and regularization R(u) we arrive at a finite dimensional

optimal control formulation that is of the general form

nl}iyn C(y) + R(u) s.t.b(y,u) =0. (16)

The state variable y € RN contains the N unknowns of the poloidal flux approximation
in V** and V'". The components of the control variable u € RM are the currents in the M
different coils.

By the first order optimality conditions we know that for solutions (u*,y*) of (16) there

exist so called adjoint states p* € RN such that the following 2N + M non-linear equations
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hold
CyT(y*) + bYT(y*,u*)p’k =0,
Rz(u*) + bf(y*, u*)p* =0, (17)
b(y*,u*) =0.

Here the subscripts y and ,, denote differentiation with respect to y and u, respectively.

X

Splitting p = (p&, p<5, p2, p', p2) " analogously to y = (y&,y<5,y,y!, A)T we can provide
the more detailed depictions

T
d (v yy5w\  [(pS

b, (y,w)p = 0 P
0 |
0 pk
T .
and by (y, w)p with
T
by (y, u)
ex ex ex ex ex ex T
dygx (ye 'Yy ,a) dﬁ,‘ (y¢ 'Yy ,u) 0 0 0
0 I P P 0
= 0 0 din (5L yys ) A (s A) ARy yyha) |
pir pin " 0 0
0 0 dsi:n (Yo ¥y 2) dsi; (i yima) Gy yi )
where I®* and I' are unit matrices.
A Newton-type method for solving (17) [5, Chap. 14] are iterations of the type
Cyy(¥") 0 by (yh,ub)\ [y —y* oc\)
0 Ru(w)  BIy S uf) | |u* —uf | =—| RI@*) |. (18)
by (y*, uf)  by(y, u¥) 0 pr! b(y~, u¥)

The iteration scheme (18) is different from Newtons method for (17), since it neglects
second order derivatives of b(y, u). It is known that such modifications are prone to con-
vergence issues, but this doesn’t seem to be an issue here. In the terminology of Newton
methods we use rather an inexact Newton method, than an exact Newton method.
Since in the number of coils is much smaller than the dimension of the approximation
space V** and V', the size of the non-linear system(18) is roughly twice as large as the
size of the non-linear discrete free-boundary equilibrium problem (12). Even though it
would be possible to invert the linear system in (18) with a direct solver, we have im-
plemented an algorithm (see Algorithm 1) based on the Schur complement, as this ap-
pears as a minor modification of Newton’s method for the constraint (15). When the
iteration stops, the auxiliary matrix valued variable Y is equal to the sensitivity y,(u) =
—b;l(y(u), u)by(y(u), u). In general, it is recommended to avoid the explicit calculation of
these sensitivities and adjoint methods were introduced for exactly that purpose. How-
ever, as we have a very few number of control parameters, this is not an issue. To motivate
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Algorithm 1 we introduce
Y := —b;l (yk, uk)bu (yk, uk) and Ay := —b;l (yk, uk)b(yk, uk)
and obtain from (18) first the identity

yk-*—l _ yk — Yk (uk+1 _ uk) + AYk

k+1 _ 4k

and then the following linear system for the increment w u

M(yk, uk) (uk+1 _ uk) — _m(yk’ uk)’
with
M(v5, u¥) := Ry (u¥) + Y[ Cyy (V) Y
and
m(y",u) = Ry (u) + Y{ CY (") + Y{ Cyy (") Ayi.

In the case that b(y*, uX) (and hence Ayy) vanishes we have that vanishing m(y*, u*) would
also imply that the first order optimality conditions (17) hold true. Hence, if both Aug and
Avyy vanish then the first order optimality conditions (17) hold true.

The iteration scheme (18) for the constraint optimization problem (16) involves first
order derivatives of b(y,u) and first and second order derivatives of R(u) and C(y). The
derivative by(y, u) is already available from the Newton iterations for (15) and as we have
explicit expressions for b(y,u), R(u) and C(y) that are algebraic in u and y we can also
provide the remaining derivatives.

4 Results and discussion
We highlight that, to our knowledge, there is no theory yet available, that justifies rigor-
ously convergence of the MEM-M. Only for lowest order Lagrangian elements we have a
convergence assertion in L* [24, Theorem 1]. Therefore, we present here first an experi-
mental validation of the MEM-M, and continue afterwards, in Sect. 4.2, with the applica-
tion.

All the numerical results are based on the MATLAB/Octave library FEEQS.M devel-
oped by one of the authors. This library utilizes in large parts vectorization. Therefore,
the running time is comparable to C/C++ implementations.

4.1 Experimental validation

For validation of the MEM, we consider a rectangular domain € = [-1,1]* and de-
fine Q" as the polygon with vertices (-0.125,0.5), (0.375,0.25), (0.375,-0.375), (0,-0.5),
(=0.375,-0.375), and (-0.5,0.25). The meshes 7™ and 7 for the interior and exterior
domain will be a Cartesian mesh and a triangular mesh. For simplicity we prefer to take
QX = Q™ = Q\ Q™. For the numerical test, we take D = 1 and choose the data f(x,y) and
Yo in agreement with v (x,y) = cos(irx) sin(ry) as solution of (7). If hex (Ki,) is the max-
imal diameter of elements in 7 (7™), and pe, (pin) the local polynomial degree of the
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Figure 9 Definition of ™. Adaptive definition of ™™ in the case of minimal overlap between Q;“ and Q7%
Note that, y** (magenta) remains fixed, while ™ (red) changes due to the refinements in Q. The interior
edges of elements of 7 and 7™ are omitted for clearness

-o- L? P1-Q1 minimal
-+- L? P2-Q3 minimal
-o- H! P1-Q1 minimal
-+- H' P2-Q3 minimal
—— L2 P1-Ql large
—— L2 P2-Q3 large
—— H' P1-Ql large
——  H' P2-Q3 large

oY)

O(h?)

o(h®)

4 10°

error

1076

) . - |
10-2 10—t
h = maz(h®, hi*) h = max(h, hi")

Figure 10 Convergene of MEM-M . Convergence in % and H' of the scheme MEM-M using L*-projection
(left) or nodal interpolation (right)

FE spaces V™ (V"), one has optimal convergence if, for a smooth solution, the approxi-
mation error in the H!(Q2¢*) and H'(QI")-norms behaves as O(?~!), with /1 = max(Mex, Hin)
and p = min(pex, pin) (in L*(25) and L?(2}")-norms one dares to obtain O(%)). To keep
the presentation as clear as possible we show in the following figures always the maximum
between the error in Q5* and that in Q"

We consider two different pairings of FE spaces V™~V The first denoted with P1-
Q1 uses lowest order linear FEs over 7 and lowest order bilinear FEs over 7™, The
second pair, denoted with P2—-Q3 uses quadratic FEs over 7 and bicubic FEs over 7™,
The elements of P2-Q3 are not only continuous on QI and Q¢* but have also continuous
gradients on Q.

We focus on the overlapping MEM-M (10) which uses the modified mortar mappings
and is equivalent to (11). We also analyze the influence on the error curves of using either
L? projections or interpolation to realize the gluing across ¥ and y™ for the MEM-M.
We start with the case where QI has minimal overlap with ©§* (see Fig. 8, left). Thus y™ is
adapted with the refinements in QI as shown in Fig. 9. Convergence results with MEM-M
are presented in Fig. 10. The convergence rate with MEM-M is optimal for the error in the
H'-norm. The results look slightly better if we apply the interpolation instead of the L2
projection in the definition of the mortar mapping.

Next, we study the convergence rates for MEM-M when QI has a large overlap with
Q. For this we fix QL“ to be the square [-0.76,0.65] x [-0.76,0.78] (see Fig. 8, right).
Note that both y* and '™ remain fixed during the refinements in Q;'. Once again, the
MEM-M yields optimal convergence rate in the H! norm (see Fig. 10). Moreover in the
case of larger overlap we observe even optimal convergence in the L2-norm. There is no
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Figure 11 Congergence of MEM II. Convergence in [? and H' of the scheme MEMq using L2-projection
(left) or nodal interpolation (right)
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Figure 12 Tokamak CFETR. the geometry (left), a zoom of the composite meshes (center), and the location
the points x; in the definition of the objective functional C; (right)

qualitative difference between MEM-M based on the L2-projection or on the interpola-
tion. More detailed numerical tests of the MEM-M can be found in [34].

With the classical overlapping MEM, (9) with the parameters s and ¢ set to zero
(MEMp), the convergence rates in the H! and L? norms are not optimal in the case of
minimal overlap between QI and Q¢ (see Fig. 11). The MEM, does not yield conver-
gence in the case of a large overlap between Q" and Q§*.

Our experimental results for MEM, are not very surprising. All available convergence
assertions assume s + ¢ = 1, which leads to the cumbersome integration over cut elements,

that we prefer to avoid.

4.2 A case study

We present a first case study for the tokamak CFETR. The machine CFETR, the China
Fusion Engineering Test Reactor, is a planed device in the road map for the realization of
fusion energy in China, that will follow ITER. The geometry of the machine is sketched in
Fig. 12. All the following calculations are based on the MEM-M discretization (12) of the
free-boundary equilibrium problem (2). We use lowest order Lagrangian finite element
for V* and the Bogner—Fox—Schmit finite element for V. In order to create snowflake-

like configurations similar to the ones for HL-2M in Fig. 7 we introduce two objective
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A | 1758 x 10° 4
1| -1.69x107 | —1.64 x 107 | —1.45 x 107 | —1.3x 107 | —1.28 x 107
2| 881x10° 8.79 x 106 9.28 x 10° 9.77 x 109 9.84 x 10°
3| 4.65x10° 4.6 x 109 4.78 x 10° 5.05 x 109 5.1 x 106
4| 1.75x10% | 1.84x10° | 236x10° | 2.84x10%| 2.93x 106
5| 3.33x10° 2.5 %108 | —1.61 x 106 | —5.03 x 10¢ | —5.62 x 10°
6| 938x10% | 1.03x107 | 1.15x107 | 1.15x107 | 1.15x 107
7| 896 x 10° 1.02 x 107 1.54 x 107 1.93 x 107 1.99 x 107
8 | —2.43x107 | —2.52x 107 | —2.74 x 107 | —2.85 x 107 | —2.87 x 107
9| 353x10% | 3.76x10°| 5.08x10% | 6.27x10% | 6.49 x 10°

10 | 3.94x10% | 3.61x10° | 2.08x 10° 7.7x10% | 5.09 x 10°

11 | —1.07x 107 | =1.02x 107 | —7.81 x 10% | —5.96 x 106 | —5.6 x 10°

12| 2.89x10° | 1.02x10° | —5.13x 10% | —9.13 x 10% | —9.77 x 10°

13 2.9 x 10° 3.4 x 109 4.07 x 108 3.68 x 106 3.56 x 10°

14 | —1.19 x 107 | —1.26 x 107 | —1.51 x 107 | —1.65 x 107 | —1.68 x 107

15 | 4.02x 106 3.24 x 108 2 x 10° 2.08 x 106 2.14 x 10°

16 | 5.01 x 10° 6.03 x 108 1.01 x 107 1.31 x 107 1.37 x 107

Figure 13 Results (A). The poloidal flux contour lines (top) and the 16 coil currents (bottom) in Ampere turns
for the optimal control problem (16) with objective functional C(y; w, xo) for w =0, 1,10, 100, 1000 (from left to
right), Xo = (5.42,-4.62) is indicated by the blue circle

functionals for " € Vin:

Nesi

(™) = 3 () - v (x))
(™) ZZ( 1) 1)

Gy (V™ x0) = [ VY (x0) |*.

The objective functional C; forces v to be constant on the prescribed points x;, ..., X,
The objective functional C, forces ¥ to have a stationary point at xo. Using C; alone for
the formulation of the optimal control problem (16), is the standard approach to find a
certain configuration of plasma currents that give an equilibrium boundary that is close
to the prescribed points x;.

In the following we set xo = (5.42,-4.62) and then solve optimal control problems (16)

with the objective functional

C(y; w,Xo) := C1(¥™) + wCa (¥, xo)
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=

—1.28 x 107
9.58 x 106
4.94 x 108
2.92 x 109

—5.03 x 106
1.21 x 107
1.94 x 107

—2.87 x 107
6.55 x 106
1.45 x 10°

—5.02 x 106

—1.08 x 107
4.12 x 106

—1.75 x 107
1.02 x 108
1.45 x 107

| 1.632 x 106

—1.27 % 107
9.27 x 109
4.77 x 108
2.91 x 10°

—4.47 x 108
1.29 x 107
1.89 x 107

—2.89 x 107
6.65 x 106

—2.83 x 10°

—4.34 x 106

—1.19 x 107
4.77 x 109

—1.84 x 107

—2.51 x 10°
1.54 x 107

Figure 14 Results (B). The poloidal flux contour lines (top) and the 16 coil currents (bottom) in Ampére turns)
for the optimal control problem (16) with objective functional C(y; 1000, Xg) for xg = (5.02,-4.62), (5.22,-4.62),
(5.42,-4.62), (5.62,-4.62), (5.82,-4.62) (from left to right) is indicated by the blue circle

and regularization functional

M
Ru)=1073 "1

i=1

for changing values of w. We denote by y is the vector of degrees of freedom of (Y, ¥/") €

Ve x VIn, The current density profiles (6) use the parameter values @ =1, = 1.2, y =

1.1 and ro = 6.65. The total plasma current has value I, = 1110°A. The iteration stops if

the relative increments in Algorithm 1 are smaller than ¢o/ = 1071, In Fig. 13 we see that

for a sufficiently large value of w our approach is capable to create snowflake-like plasma

equilibrium configurations.

In a second experiment we fix the weight to w = 1000 and run the optimal control prob-

lem for varying xo. The results (see Figs. 14 and 15) show that it is easily possible, to find

configurations for a great variety of locations of the lower stationary point. Even though

most of these configurations are fairly close to snowflake configurations, we were not able

to find exact snowflake configurations with this approach. Nevertheless such configura-



Heumann et al. Journal of Mathematics in Industry (2018) 8:8 Page 21 of 24

D)) )N
A | 1618 x10° | 1.630 x 10°
1| -1.26x107 | —1.27x 107 | —1.28 x 107 | —1.3x 107 | —1.35 x 107
2| 1.08 x 107 1.03 x 107 | 9.84 x 10% | 9.26 x 10° 8.6 x 106
3| 5.39x10° 5.28 x 106 51x10% | 4.81x106 | 4.43 x 106
4| 3.06x 108 3.01x10% | 293 x10% | 2.77x10%| 2.53x 108
5| =719 x10% | —6.58 x 108 | —5.62 x 10 | —4.08 x 10 | —1.97 x 108
6| 6.82x10° 9.2 x 106 1.15 x 107 1.36 x 107 1.54 x 107
71 235x107 | 2.17 x 107 1.99 x 107 1.8 x 107 1.58 x 107
8| —2.86x 107 | —2.86 x 107 | —2.87 x 107 | —2.88 x 107 | —2.9 x 107
9| 6.67x10° 6.6 10 | 6.49x 10° | 6.24 x 106 5.8 x 106
10 | 6.38 x 10° 5.85x 10° |  5.09 x 10° 5.1 x10° | 6.66 x 10°
11 | =593 x10% | =5.78 x 10 | —5.6 x 10% | —5.52 x 10% | —5.65 x 10°
12 | —6.74 x 106 | —8.22 x 10 | —9.77 x 10 | —1.11 x 107 | —1.16 x 107
13| 265 x 108 3.05x 106 | 3.56 x 10 | 4.25x 10 | 5.14 x 106
14 | —1.58 x 107 | —1.62 x 107 | —1.68 x 107 | —1.73 x 107 | —1.76 x 107
15 4.05 x 108 3.24 x 10° 2.14 x 10° 6.71 x 10° | —1.08 x 106
16 1.2 x 107 1.28 x 107 1.37 x 107 1.44 x 107 1.46 x 107
Figure 15 Results (C). The poloidal flux contour lines (top) and the 16 coil currents (bottom) in Ampere turns
for the solutions of the optimal control problem (16) with objective functional C(y; 1000, xo) and
Xo = (5.02,-4.22), (5.22,-4.42), (5.42,-4.62), (5.62,-4.82), (5.82,-5.02) (from left to right) is indicated by the blue
circle

tions are useful as it is common practice to depart from snowflake-like configurations to
tune manually coil currents that bring the equilibrium closer to an exact snowflake con-
figuration.

In the spirit of this idea we formulate a second optimal control problem (16) with the

objective and regularization functionals

M
C(y;xo) := Co(¥™™,X0) and R(u)=10"" Z(Ii = Let i)
i1

where the reference currents I,¢; are the M = 16 currents from snowflake-like configu-
rations. This formulation penalizes coil currents that deviate largely from the previously
computed currents, while forcing at the same time that ¥ has a stationary point at xq.
With this, it is possible to find coil currents that merge two different close stationary

points, leading to an exact snowflake configuration (see Fig. 16).
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Figure 16 Results (D). The poloidal flux contour lines 1| 127 107
(left) and the 16 coil currents (right) in Ampére turns 2| 9.88x 106
for the solutions of the optimal control problem (16) 3 5.13 x 106
with objective and regularization functional 4| 295x10°
Cly;x0) = G (Y™, xo) and R(u) = 10712 Z,-]f1 (i = lre)? 5 | —5.65 x 106
for xp = (5439,-4.168) and the currents of the fourth 6 1.14 x 107
row in the table in Fig. 15 as the reference coil 7| 1.99x 107
currents /. Here we found A = 1.580 x 10° 8 | —2.86 x 107

9 6.55 x 10°

10 | 6.96 x 10°
11 | —5.43 x 109
12 | —9.84 x 109
13 | 3.54 x 106
14 | —=1.67 x 107
15 2.05 x 106
16 1.36 x 107

5 Conclusions

Handling the heat where the plasma touches the vessel wall is one of the outstanding chal-
lenges for magnetically confined fusion energy research. Indeed, the predicted heat load
on the ITER vessel walls will be greater than that on the soil beneath a launching rocket.
Current experiments are trying to find magnetic field configurations which can provide
the most effective heatload reduction. One of such advanced configurations is the so called
snowflake configuration, where the plasma boundary is the flux contour-line that passes
through a degenerated saddle point of the poloidal flux.

The main control parameters for shaping the contour lines of the poloidal flux, and
hence for shaping the form and position of a plasma equilibrium in a tokamak are the
currents in the surrounding poloidal field coils. Optimal control formulations combined
with finite element methods are an obvious and fairly established mean [3, 20] to deter-
mine currents that ensure a certain desired form and position of the plasma. But the low
regularity, e.g. lack of well-defined pointwise derivatives, of standard H'-conforming fi-
nite elements, seems to be an obstacle to define good objective functions for finding the
snowflake configurations characterized by degenerated saddle points.

We therefore, presented here an extension of this approach that combines the optimal
control formulation with a mortar-type FE method. The mortar-type FE method has the
advantage that we can introduce higher order regular FE in the places where we have objec-
tive functions involving point wise values of flux derivatives. This is achieved in combining
FE on Cartesian meshes with FE on triangular meshes.

The examples for the tokamak CFETR approve the viability and flexibility of the pre-

sented approach.
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