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Abstract
Non-destructive testing methods became popular within the last few years. For steel
beams incorporated in buildings there are currently only destructive ways for testing
the yield limit as well as for determination of the current stress level. Rise of ultrasonic
and micro-magnetic tools for (non-destructive) measurements allows the
characterization of the inbuilt material especially of old steel bridges as economical
maintenance of the infrastructure. It is possible to determine the reserve of
residuence of bridges or of any other existing steel buildings in order to upgrade
them competitively for future usage by the possibility of a simple way of
strengthening by welding or using bolds. This is done using modern devices for
ultrasonic and micro magnetic data recording on the one hand and modern
techniques from nonparametric statistics such as sieve, partition and semi-recursive
estimators on the other hand.

Keywords: Nonparametric regression; Robust regression; Mathematical and
mechanical modeling; Dependency modeling; Civil engineering; Non-destructive
testing; Material characterization

1 Introduction
The load bearing capacity in existing buildings is classically determined by means of load
tests. If a calculation model gives no sufficient results, highly complex test loadings have
to be done to determine the load bearing capacity. For verification in existing buildings
material characteristics as the yield strength and the existing stresses have to be known,
determining them non-destructively is an obvious advantage. Furthermore, the internal
forces could be estimated, which includes second order theory as well as e.g. imperfections
and signal denoising (outlier detection). This is crucial for the verification of (sufficient)
load bearing capacity. The appointed lifetime of a new building is 50 to 100 years. Es-
pecially for steel buildings, with high variations but well known material characteristics,
extensions of the lifetime in the sense of sustainability might be possible, cf. [1]. The actual
standards for condition monitoring are in [2, 3] with [4, 5] explaining how to localise fa-
tigue effects before crack initiation starts. Therewith mechanical stresses can be obtained
via electromagnetic induced ultrasonic measurements and acusto-elastic effects, cf. [6, 7].
Thus, mathematical modeling is necessary for the micromagnetic records to determine
material characteristics, the ultrasonic records to determine the current state of load and
finally generalising the mechanical model to estimate the internal forces. This work links
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the non-destructive records with modeling and the generally accepted engineering stan-
dards.

2 Non-destructive testing methods
To determine the residual carrying capacity of a construction without risk of collapse
is just possible with non-destructive testing methods. The determination of the yield
strength by micromagnetic measurements and the determination of the current load state
by ultrasonic measurements are described below.

2.1 Unknown material characteristics
The yield strength is the most important material characteristic of the steel to determine
the load-bearing capacity. It is defined via regulations to characterize different steel qual-
ities. If the yield limit is determined by measurements, the ultimate limit state design can
be proven by real material characteristics without model uncertainties and not by guaran-
teed minimum values. For determination of the yield strength of an investigated beam the
ferromagnetic properties of steel are used. There is a causal relation between magnetism
and the yield limit to be determined, see [8] for details. For calibration means, the mag-
netic properties of the different steel types are determined and assigned to their yield limit
measured in a classical tensile test.

2.2 Determination of the current load state
The determination of the current state of stress of a built-in steel beam is possible via ultra-
sonic measurements, compare [7, 9, 10]. The influence of the stress and strain conditions
on the speed of the propagation of the ultrasonic waves is used for the ultrasonic stress
analysis. Comparing the speed of the ultrasonic waves in a beam without load v0 and the
speed in a beam with load vl , the current state of stress ς (in N

mm2 ) can be determined using
the following equation:

ς =
(v0 – vl)

v0
· K

H
, (1)

K
H is a linear factor, a so-called acusto-elastic constant, that is determined in lab tests,
compare Fig. 1. In these tests the speed v0 is measured in beams without load. In practice,
there is no possibility for a direct measurement as there are no in-built beams without
load. Due to the anti-symmetric stress distribution in the cross section of a beam, the
speed v0 can be determined by the mean value of symmetrically distributed measurement

Figure 1 Left: Beam in lab test. Right: Anti-symmetric stress distribution in the cross section
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Figure 2 Left: Speed variation influenced by stress. Right: Speed variation due to texture

points in a loaded beam assuming that there is no axial force. The texture due to the rolling
process of a steel beam causes the directional property of the ultrasonic measuring results
(anisotropism). The difference of the speed according to the texture is shown in Fig. 2,
Right and the difference of the speed according to the stress due to loading is shown in
Fig. 2, Left. Ultrasonic measurement values are the addition of both of them. The influence
of texture is up to ten times higher than the influence of stresses. To show a sufficient
bearing resistance, the much greater influence of texture has to be eliminated.

3 Construction & measurements in existing buildings
3.1 Construction
Higher static loads can easily be supported by steel constructions with simple strength-
ening measures. But the used steel and its material characteristics, especially his bearing
capacity, are not known. Furthermore, the current state of load is typically unknown. Mod-
ifications of buildings in their previous service lifes caused changed load transfers, which
are not incorporated in current construction plans. In many cases, construction plans of
the building to be investigated do not exist anymore. Thus, it is impossible to make a se-
rious statement about the load bearing capacity still available in the beams.

3.2 Recording data
Recording data in an existing building is a grueling task which has to be improved. The
measurement equipment needs external electrical power supply and should be adapted to
run with a battery to make it more handy, unless the devices themselves are quite small
and handy, compare Fig. 3 and Fig. 4. Nevertheless, measurements have been made at the
materials testing institute (MPA) of the University of Kaiserslautern as well as in exist-
ing buildings like the Ceasarparkbrücke (Kaiserslautern), see Fig. 5, and a covered market
(Frankfurt/Main), see Fig. 4. In the sequel, the data evaluated in Sect. 5 are those obtained
in the lab test because the exact load situation is known, thus, we have structural as well
as measured residuals for the evaluation of the techniques.

4 Mathematical modeling and applications
The necessity of fitting a regression model instead of solving a linear equation system
is quickly explained: we have in-data-dependencies which are modeled as stochastic de-
pendencies on the one hand, furthermore linear dependencies due to the statical system
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Figure 3 Left: Both sensors for recording ultrasonic runtimes and micromagnetic. Right: A coated steel beam
in the lab with devices to record ultrasonic signals as well as micromagnetic quantities. The notebook in front
shows hysteresis curves surveilling the micromagnetic records used for the determination of the yield
strength

Figure 4 Left: An AScan which gives, via peak-to-peak-analysis, the time-of-flight of the ultrasonic waves to
estimate the stress. Right: Recording data in the market hall

Figure 5 Left: The Caesarparkbrücke in Kaiserslautern. Right: Optimal Measurement Conditions on coated
beam

(compare Fig. 6 for a complex statical example) which makes an application of the Gaus-
sian algorithm (or something equivalent) insufficient on the other hand. To fit a regression
model to the data, we need to develop a stochastic model of the ultrasonic measurements.
The time-of-flight of the ultrasonic wave in every point measured should be related to
the local stress in the beam. Additionally, the residuals have to be taken into account for
(stochastic) dependency modeling. Finally, a segmented regression approach based on the
statical system and statistical decision criteria, was developed, for details see [9, 11] as a
prequel to the estimation of the internal forces, with algorithms implemented in MAT-
LAB and R, cf. [12, 13]. Unless the times-of-flight are observed in practice we work with
simulated stresses according to equation (1) in the sequel to simplify notation.
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Figure 6 Left: The 7 traces times-of-flight are recorded in as a cross section (compare Abb. 5.25 in [9]). Right:
An overview about the amount of beams and, thus, complexity of records and changes of the statical system

4.1 Mathematical and mechanical models
The stresses existing in a steal beam can be decomposed in different sources of stress
via classical/technical mechanics, see e.g. [9]. For security and safety concepts, we have
to decompose them in their single parts: normal (N ) and residual (E) stress, stress due to
bending around the y or z axis (My and Mz , respectively) and stress due to warping torsion
(Mw). The concept of measuring points uses symmetry as far as possible and looks, locally
in every cross section of the steel beam along the x-axis, as follows:

This leads to the following identities for the local stresses which has to be handled math-
ematically, compare Fig. 6 and [14] for details:

ς1(x) =
z1

iy
My(x) +

y1

iz
Mz(x) +

q1

iw
Mw(εx) + E1 + N , (2)

ς2(x) =
z2

iy
My(x) +

y2

iz
Mz(x) +

q2

iw
Mw(εx) + E2 + N , (3)

ς3(x) =
z3

iy
My(x) + E3 + N , (4)

ς4(x) = E4 + N , (5)

ς5(x) =
z5

iy
My(x) + E5 + N , (6)

ς6(x) =
z6

iy
My(x) +

y6

iz
Mz(x) +

q6

iw
Mw(εx) + E6 + N , (7)

ς7(x) =
z7

iy
My(x) +

y7

iz
Mz(x) +

q7

iw
Mw(εx) + E7 + N (8)

with known constants from geometry: ε, iy, iz , iw, zj, yj, qj, j = 1, . . . , 7. We will use gi =
(gyi , gzi , gwi ) = ( zi

iy , yi
iz , qi

iw ) in Sect. 4.3 to shorten notation. Assume the bending moments
My, Mz to be polynomials of degree at most n ∈ N and the warping torsion to be some
hyperbolic function, i.e. Mw(x) = a + b sinh(εx) + c cosh(εx) = a + b sinhε(x) + c coshε(x),
a, b, c ∈ R (see e.g. [9] for details). Note, that all the mechanical moments could be trivial
in reality, which is also covered in the mathematical model. A sketch of the procedure of
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computing the mechanical moments will be given in Sect. 4.3 after dependency modeling
in Sect. 4.2.3 and (nonparametric) outlier detection in Sect. 4.2.2.

4.2 Regression model for segmented stress estimation and dependency
modeling

Due to the statical system we expect the stress curve to show interval-wise different be-
haviour. The points of change of the (local) regression function, driven by the stress curve,
are well known through the statical system.

4.2.1 The regression model
For observations points x1, . . . , xN , we want to estimate the measured stresses ς1, . . . ,ςN ,
i.e. for all 1 ≤ j ≤ N : ςj = f (xj) + εj, where εj is the residual term, compare equation (1).
This stresses are driven by a polynomial and a hyperbolic term. The classical minimization
problem in linear regression for a third order polynomial and hyperbolic terms looks as
follows:

min
a,b,c,d,e,f

N∑

k=1

(
ςk – a – bxk – cx2

k – dx3
k – e sinhε(x) – f coshε(x)

)2.

Due to practical reasons, we restrict ourselves to (piecewise) degree three polynomials
with hyperbolic terms and a fixed natural number K of segments, the permitted num-
ber of different regression functions. The equation to be minimized, where the Ijs are in
increasing order with

⋃
j Ij = {x1, . . . , xk}, is

min
L=1,...,K

L∑

j=1

min
aj ,bj ,cj ,
dj ,ej ,fj

∑

k∈Ij

(
ςk – aj – bjxk – cjx2

k – djx3
k – ej sinhε(x) – fj coshε(x)

)2.

Further, aj, bj, cj, dj, ej, fj are the coefficients of the jth regression function, i.e. the ones
for the interval Ij. Additional knowledge of the statical system reduces the computational
effort: only in load introduction points of the system a change of the function is permit-
ted. This is an additional criterion in the minimization as well as the R2-statistic to be
minimized and based on [11]. Furthermore outliers are a serious problem in practice and
the residuals show a dependency structure (in particular, they seem neither independent
nor normally distributed in contrast to the Gauss-Markov Theorem, see Sect. 4.2.3). Our
approaches to this tasks are presented in detail in the following subsections.

4.2.2 Statistical tests for outlier detection
The devices used for data-recording are error-prone. This means that a lot of work has to
be done to eliminate/minimize the systematic error occurring due to the measuring de-
vices, compare Fig. 7. At a first glance physically non-plausible records were eliminated
using a fixed-deviation criterion based on the literature, compare [9]. This reduces on the
one hand the amount of errors recorded, on the other hand the number of records avail-
able. A statistical test based on the median and asymptotics of order statistics has been
developed to solve this problem, for details on multiple testing see [15]. It works as follows:
for a dataset z = (z1, . . . , zN ) compute the median z̃, the 25% and 75%-quantiles and their
distance z̃25, z̃75 and z̃diff , respectively. Those recorded values satisfying |zi – z̃| > b · z̃diff
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Figure 7 Left: One source of errors is missing one of the echos (compare Abb. 3.7 in [9]). Right: Precise
preparation is necessary for feasible measurements

Figure 8 Residuals from real data analysis in one trace, hence 1- and not 7-dimensional. On the one hand
with non-zero mean, on the other hand with structure (here: heteroskedastic, predictable). Note, that this is
just a small example neither indicating nor including all information available

where b > 0 is the bandwidth (chosen according to the robustly estimated standard devi-
ation and the asymptotics of order statistics to get the desired α-level, see [16] are classi-
fied as outliers. This significantly improves the results unless robust methods according to
[17] have been used, e.g. a Mahalanobis-distance based outlier test. This has been high-
lighted to be unsatisfactory for practical problems, e.g. due to numerical inconsistencies.
They occurred in the computation of the regression curve with confidence bands of range
1100 N

mm2 . This is rather far away from the prevalent yield limit of 235 N
mm2 in typical steel

beams incorporated. Thus, additional effort has to be done for dependency reduction.

4.2.3 Dependency modeling
For a real data example, the residuals εj = ςj – f (xj) from a small dataset can be seen in
Fig. 8: Dependency measures such as Copulas indicate dependency too. Possible physical
reasons are, beneath others, the induced magnetic field while measuring with electromag-
netically induced ultrasonc waves or the local orientation of the germ-grain structure of
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steel, compare [4, 5, 18]. Therefore, a model for the dependencies has to be developed, in
this case a non-causal time series approach which could model material and device influ-
ences from neighbouring points of measurement. This makes it impossible to use classical
estimates, e.g. Yule-Walker-Estimates, for this problem, see [19] for details. The solution
to dependency modeling ends up to be a non-causal Moving Average process of order 4,
i.e. we model the residual εk from the segmented regression model via

εk =
∑

j=–2,–1,1,2

αj · εk+j + δk

for finite and bounded αj, j = –2, –1, 1, 2 and new independent zero-mean residual δk . The
estimation of parameters has to be done via computationally expansive combined bisec-
tion and grid-search, unless other techniques for estimation in non-causal settings are
available. Nevertheless, this gives opportunity to:

(i) Continue with the model with corrected dependency structure
(ii) Restart the estimation procedure with reduced influence due to dependency.

The procedure of choice is the second in order to stay with classical security/safety con-
cepts and apply methods from nonparametric statistics. Thus, for simulated data (the co-
efficients of time series are theoretically zero) as well as for real data (where we expect such
dependencies) we start with the regression model according to Sect. 4.2.1 and do the de-
pendency treatment presented here to continue with the estimation of the internal forces
in Sect. 4.3. Furthermore, this states that the unique estimation of the internal forces using
a linear equation system is in general not possible.

4.3 Local regression estimates for internal forces
Using the symmetries shown in equations (2) to (8) and known constants from geom-
etry the estimation is based on partitioning and sieving the observations in the differ-
ent traces, compare Fig. 9 to 11. This is done in (up to) six steps, for description pur-
poses with data generated via finite-element simulation in the description and real data
subsequently, with least squares for each local estimation, starting with an initial value
θ0 = (α0

0 , . . . ,α0
n1 ,β0

0 , . . . ,β0
n2 ,γ 0

0 ,γ 0
1 ,γ 0

2 ) from mechanics for the internal forces My, Mz , Mw,
respectively, the exponent is an index for the estimation step, the coefficients n1, n2 ≥ 0 are
the polynomials degrees. Furthermore, we use α̃, β̃ , γ̃ to denote the moments’ constants
multiplied with the geometry factors to obtain stresses. The procedure works as follows:

Figure 9 Left: Example input for a fork-mounted single-carrier. Right: After normalisation



Doktor et al. Journal of Mathematics in Industry  (2018) 8:10 Page 9 of 17

Figure 10 Left: Estimation of My . Right: Estimation of Mz +Mw

Figure 11 Left: Update of the estimation of My . Right: Update of the estimation of Mz +Mw and termination

Algorithm First, normalise all observations, i.e. remove the constants c = (c1, . . . , c7), and
keep them for estimation of the occurring constants α0, β0, γ0. The part left is the sum
of normal and residual stress. Note, that the separation in residual and normal stress (i.e.
splitting the constant) is not possible in general unless further information, e.g. from micro
magnetics, see Sect. 4.5, are available.

Second, estimate the internal force My from traces 3 and 5 using (robust) Least Squares
(cf. [20]) under the constraint |α̃1

0 | ≤ |c3|, |c5|. The estimate obtained is called θ2 =
(α2

0 , . . . ,α2
n1 ,β0

0 , . . . ,β0
n2 ,γ 0

0 ,γ 0
1 ,γ 0

2 ) (analogously without mentioning in the sequel).
Third, estimate the internal forces Mz + Mw (note, that they are either both triv-

ial/constant or linearly independent, thus, there is a unique solution to this estimation
problem) in traces 1, 2, 3, 5, 6, 7 under knowledge of My (i.e. subtraction) from the previ-
ous step and keep the constraints |β̃3

0 + γ̃ 3
0 + α̃2

0 | ≤ |c1|, |c2|, |c6|, |c7|.
Fourth, as first update step, estimate the internal force My using the information in all

traces (except trace 4) under knowledge of Mz and Mw (i.e. subtraction) from the previous
step (see Fig. 10) and keep the constraints |β̃3

0 + γ̃ 3
0 + α̃4

0 | ≤ |c1|, |c2|, |c6|, |c7|.
Fifth, as second update step, estimate the internal forces Mz +Mw in traces 1, 2, 6, 7 under

knowledge of My from the previous step (see Fig. 11) and keep the constraints |β̃5
0 + γ̃ 5

0 +
α̃4

0 | ≤ |c1|, |c2|, |c6|, |c7|.
Sixth, check whether ‖θ4 – θ5‖ < κ for a previously fixed constant κ > 0 (i.e. a Cauchy

sequence criterion) or repeat updating the estimates under all information available in
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Figure 12 Example of a contaminated dataset with less points and reasonable result after 36 iterations

random and non-repeating order at most M times, checking the Cauchy criterion after
each iteration.

An example with less and contaminated data and bad initial values, including the ne-
cessity of the last step, can be seen in the following Fig. 12: The trend in the residuals is
quite clear: starting point is a quite bad initial value which gets better and better with an
increasing number of iterations. This corresponds to two effects in the construction of
the estimates: First, we use the least squares approach by Howard and Welsh (compare
[20]), which avoids deterioration of the estimate. Second, the ping-pong between differ-
ent datasets improves the local estimates, thus, the global ones. Therefore, we can clip the
following:

• Weaker dependence structures are crucial for the application of the estimation
techniques, therefore, the dependency reduction was necessary.

• The constants α0, β0, γ0 can not be estimated simultaneously in steps 3 and 5, thus, a
fixed-constant approach has to be chosen including several trials.

• A deterioration of the local estimation is not possible due the construction of the
Levenberg-Marquardt least squares, cf. [21, 22].

• Using the geometry constants from equations (2) to (8) and the estimates α0, β0, γ0

from the final estimation, the remaining parts of c, c̃ is the estimate for the sum of
residual and normal stress and with knowledge of the normal stress, a decomposition
in residual and normal stress can be done, see [18].

• An absolute value bound (or in some cases: estimate) for the normal stress could be
obtained via

N = min
i=1,...,7

{∣∣ci – (gyi · α0 + gzi · β0 + gwi · γ0)
∣∣},

an estimate for the residual stresses is given via

Ei = ci ± N – (gyi · α0 + gzi · β0 + gwi · γ0).

Note, that those estimates are not necessarily consistent ones.
• If there is no feasible solution to the estimation problem, plasticising areas might have

been identified/detected. A local decrease of residual stress (internal forces devour
residual stress, cf. [18]), i.e. searching in double of the yield limit (see Sect. 4.5) for the
constants is the approach of choice in this case.
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4.4 Properties of the estimates
The estimates in this procedure are partition, sieve and semirecursive estimates, unless
the procedure to estimate within this steps locally is a (robust) version of the Levenberg-
Marquardt Algorithm, compare [17, 20–23].

Theorem 1 (Doktor, Stockis) Let My, Mz be polynomials of degree at most n ∈ N. Further,
let Mw be a hyperbolic function (i. e. the mechanical model is stated properly). Furthermore,
let the tuple (xi,ςi)i=1,...,N ∈R

8 be pairwise uncorrelated with finite expectation |μ| < ∞ and
uniformly bounded variance 0 < σ 2 < ∞.

Then the estimates used in every step are consistent. Furthermore, θ is a consistent esti-
mate for the coefficients of the internal forces.

Proof The statement follows mainly from the Theorems 10.3, 20.3 and 24.1 in [23] and
Slutsky’s Lemma. �

Theorem 2 (Doktor, Stockis) Consider the setup of Theorem 1. Then the estimates ob-
tained for the internal forces are asymptotically normally distributed.

Proof The statement for sieve and partition estimates follows from consistency and The-
orems 11.4 and 21.1 in [23], the final statement uses additionally the rules of calculus for
the multivariate normal distribution. �

Note, that this statement can be generalized in a robust setting according to [17] unless
the rate of convergence decreases which is of high importance in practical applications as
recording data is time-consuming and might be expansive.

4.5 Further improvement with micromagnetics
The determination of valid confidence bands is a necessity for proper safety concepts in
civil engineering. Further, the classification of residuals observed in ultrasonics has to be
done properly to avoid economical and ecological disadvantages. Based on [18], additional
micromagnetic measurements are used to link techniques and concepts.

4.5.1 Reduction of complexity
The devices used to record micromagnetic quantities measure 42 different quantities.
They use four different implemented sensors which are rather expensive. To make the
device handable in practice, a goal is the reduction of the number of quantities necessary
without significant loss of quality. For this purpose we applied multiple statistical tests of
independence, based on χ2-tests, for details, we refer to [15]. With a (combined) level of
10%, 36 quantities are identified to be stochastically dependent. The quantities left are
driven by two sensors only: the Barkhausen effect and incremental permeability, which
halves the amount of sensors required, see [8] for details.

4.5.2 Combining ultrasonic waves and micromagnetism
The link function is based on stochastic moments of the kernel density estimate of the mi-
cromagnetic measurements. In practice, several thousand micromagnetic observations
are available for every single trace j = 1, . . . , 7 of the cross section in x, making a proper
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Figure 13 The density of the distribution of the residuals estimated using a Gaussian kernel and
measurements is given in blue, the mixture of the densities estimated using the link-function in orange. The
difference is minimal due to bias-effects which vanishes asymptotically

Figure 14 The analytic (blue) curve, the under idealised conditions recorded data (orange) the estimated
curve (cyan) with confidence bands (purple)

estimation of the stochastic moments possible. It allows the adaption of the confidence
band given the distribution of the residuals specifically for all points. Assuming the link-
function to be consistent, the parameter of the mixture of Gaussians could be estimated
consistently, see Fig. 13 and cf. [24], for details, with known asymptotic distribution and
the following confidence bands for a 4-point-bending-test, see Fig. 14 and Fig. 15. Finally,
the combination of the yield limit gives bounds for the constants c̃ and might lead to the
decomposition of the constant in residual and normal stress or the identification of plas-
ticising areas, see [18] for details.
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Figure 15 The analytic (blue) curve, the under idealised conditions recorded data (orange) the estimated
curve (cyan) with smaller confidence bands (purple) compared to the classical setup

5 Discussion and results
5.1 A simulation example
The estimation technique described in Algorithm has been applied to datasets generated
via Finite-Element simulation. The example inputs were an IPE 360, length 6800 mm and
fork-mounted single-carrier with line load only which reduces the amount of variables to
be estimated. The internal forces for the simulation are analytically given as

My = 0 + 56,208.7654 · x – 8.2642 · x2,

Mz = 0 – 3382.1138 · x + 0.49737 · x2,

Mw = 0 + 856.7814 · 2,179,723.9601 ·
(

1 – cosh(εx) + tanh

(
6800ε

2

)
· sinh(εx)

)
,

E1 = 12,

N = 0

and have minor fluctuations due to the FE-grid. In the sequel, a cross-validation approach
for verification is used. Concretely, the stresses in traces 2–7 were used for estimation and
the stress in trace 1 (all internal forces occur in trace 1) for verification, compare Fig. 6 and
Eqs. (2)–(8). Thus, the residuals are given by

εx = ς1(x) –
(

z1

iy
M̂y(x) +

y1

iz
M̂z(x) +

q1

iw
M̂w(εx) + Ê1 + N̂

)

for known constants from geometry.
For 69 (0 mm, 100 mm, . . . , 6800 mm) equidistant values for the stresses the following

estimates are obtained:

M̂y = 0 + 56,208.5503 · x – 8.2641 · x2,
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M̂z = 0 – 3382.1138 · x + 0.49737 · x2,

M̂w = 856.7814 · 2,179,723.9599 ·
(

1 – cosh(εx) + tanh

(
6800ε

2

)
· sinh(εx)

)
,

Ê1 + N̂ = 12

with residual mean μ = 0.012 and standard deviation σ = 0.16 which is close to the non-
equidistant (69 points randomly chosen) case:

M̂y = 0 + 56,207.8515 · x – 8.264 · x2,

M̂z = 0 – 3382.1142 · x + 0.49737 · x2,

M̂w = 856.7814 · 2,179,923.3682 ·
(

1 – cosh(εx) + tanh

(
6800ε

2

)
· sinh(εx)

)
,

Ê1 + N̂ = 12

with residual mean μ = 0.013 and standard deviation σ = 0.18.
A Monte-Carlo study with 1,000,000 independent repetitions leads, for 69 equidistant

noisy (additive independent zero-mean normally distributed error terms, standard de-
viation σ ) stresses, to the following estimated residual means, standard deviations and
repetitions of step 6 (upper limit 100 was never reached):

σ 5 10 25 50 75 100
Residual mean –0.089 –0.104 –0.054 0.107 0.224 0.0189
Residual standard deviation 0.821 1.158 2.491 4.848 7.269 9.711
Mean number of iterations 2 5 7 11 15 21

which demonstrates principal applicability of the estimation technique.

5.2 A real data example
A bending test has been done in the material testing institute’s lab with an S235 steel beam
(yield strength 235 MPa, profile IPE300, length 2000 mm) and an evenly distributed load
applied in the section 850 mm to 1350 mm. The raw data obtained in the lab test, without
any preprocessing, are obviosly error prone, as been shown in the following, non-rescaled,
Fig. 16. The load q is choosen to induce a stress up to 235 MPa in the section 850 mm to
1350 mm of the beam. A first step is the elimiation of the outlier in the data using the tech-
nique presented in Sect. 4.2.2 and reduction of dependencies according to Sect. 4.2.3. This
increases the data’s quality dramatically. As there is neither warping torsion nor bending
around the second axis, the estimation reduces to one internal force only. A least squares
approach on the one hand and a robust least squares approach on the other hand leads
to the following results, illustrated in Fig. 17: Here, the maximal structural deviation of
the least squares approach is quite large (22.3 MPa) in contrast to the robust least squares
(7.5 MPa using Huber-weightening). This underlines the real applicability of the (statisti-
cally) robustified technique.
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Figure 16 The non-scaled initial data. Several outliers due to dramatically missevaluated AScans are obvious
and corrected in a preprocessing step before further estimation

Figure 17 The final estimation of the lab tested, coated beam. The classical approach leads to an
unsatisfactory evaluation. Therefore, a robust weight function has been in use too, which improves the results
and comes close to the underlying structure

6 Conclusion and further developments
Non-destructive testing is always in competition with destructive testing. Using a combi-
nation of micromagnetic and ultrasonic measurements it has been shown that the reserve
of resistance of existing steel buildings can be determined non-destructively. The occur-
ring dependencies in the steal beam were modeled and approximated to obtain a weaker
dependency structure. For the estimation of internal forces the traces have been chosen
to contain all necessary informations but keep the mathematical model handable. The
combination of different nonparametric estimation techniques and stepwise robust least



Doktor et al. Journal of Mathematics in Industry  (2018) 8:10 Page 16 of 17

square estimation leads to surprisingly good results, even for small sample sizes. Further-
more, these estimation techniques can be further generalised in a future work to a robust
setting (e.g. optimally bias robust estimators) to keep applicability for e.g. coated beams.
This ends up in new and improved security, usage and sustainability concepts for existing
buildings including all relevant internal forces.
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