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Abstract
A shape optimization approach for the design of cavities with a specified wall shear
stress profile is presented. Applications are the design of spin pack geometries with
low and uniform residence times and without dead spaces to prevent polymer
degradation for sensitive materials. The optimization uses a Surrogate Model based
on the Newtonian Stokes equation as a simplification. An indirect objective based on
wall shear stress is used to improve the residence time. The results are then validated
on a realistic spin pack with the Full Model based on the non-Newtonian
Navier–Stokes equation.
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1 Introduction
Polymer spin packs are widely used for the production of synthetic fibers and non-woven
materials. Polymer melt is extruded through a pipe into the spin pack geometry where it
is first distributed along the whole cross-sectional area before it passes several layers of
filter material and is finally spun into fibers by the spinneret plate which consists of a large
number of very small nozzles. The whole spin pack is heated in order to prevent premature
solidification of the melt. However, the influence of heat can lead to polymer degradation
if the residence times are too long. For sensitive polymers with interesting properties this
issue can be the limiting factor which prevents innovations due to the fact that spinning
is not possible. This can be resolved by designing special spin packs with low residence
time profiles. An important part in the spin pack design is the cavity which distributes
polymer from the inlet pipe onto the whole cross-sectional area. This part of the geometry
is in particular vulnerable for dead spaces and regions with slow flow velocities where
degradation can take place. An indirect objective based on the wall shear stress is used
to improve the residence time. The idea is that problematic regions usually occur in close
proximity to the walls. In general a low wall shear stress coincides with a slow velocity
zone close to the wall. On the other hand being able to design cavities with a sufficiently
high level of stress throughout its wall is an effective tool against dead spaces and large
residence times and thus against polymer degradation.

A spin pack is geometrically complex (see Fig. 1) and most polymers are non-Newtonian.
Typically, commercial simulation software is used for the simulation, which makes deriva-
tive based shape optimization difficult to handle. Therefore, a surrogate model approach
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Figure 1 Geometry of the reference spin pack design

is used to optimize specific parts of the spin pack. The improved design is then validated
with the complex model.

In Sect. 2 the two models are introduced: The Full Model is used for validation and is
based on the non-Newtonian Navier–Stokes equation. It considers the whole geometry
of the spin pack and pathlines are traced to evaluate the distribution of residence times.
The Surrogate Model on the other hand is based on the Newtonian Stokes equation. It
only considers the geometry of the spin pack cavity and wall shear stress is used as an
indirect objective instead of residence time. The numerical approach for solving the shape
optimization problem based on the Surrogate Model is derived in Sect. 2.3 and optimized
cavities with uniform wall shear stress are presented in Sect. 3.1. These cavities are then
validated with the Full Model in Sect. 3.2 in a realistic setting.

Further numerical and theoretical results on the shape optimization of polymer spin
packs can be found in [1–4]. Another interesting application of a similar problem is studied
in [5, 6]. The authors use shape optimization to design aorto-coronaric bypasses and use
wall shear stress as an optimization criterion.

2 Methods
A typical spin pack used for fiber production is shown in Fig. 1. Polymer enters through
the Inlet, passes a short Tube and is distributed in Cavity 1 onto the Filter. Polymer passes
the Breaker plate, which is basically a metal plate with a number of holes and its main
purpose is to support the Filter. There is a second cavity (Cavity 2) before the material
enters the Nozzles and is spun into fibers. The Nozzles consist of larger counterbores and
then very small capillaries where the actual spinning takes place.

In the following we first introduce the Full Model based on the non-Newtonian Navier–
Stokes equation which is used to compute the residence time of the polymer within the
spin pack. After this the Surrogate Model based on the Newtonian Stokes equation is
introduced. The Surrogate Model is used for the optimization of the geometry of Cavity 1.
See Table 1 for a comparison of the two models. The detailed simplifications and their
justifications are given later in the Sect. 2.2.
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Table 1 Comparison between Full and Surrogate Model

Full Model Surrogate Model

PDE Navier–Stokes Stokes
Viscosity non-Newtonian Newtonian
Geometry whole spin pack Cavity 1 (Filter in boundary condition)
Objective residence time wall shear stress

2.1 Full model: non-Newtonian Navier–Stokes
Let Ω ⊂ R

3 be the geometry of the spin pack. The flow is modeled using the stationary
Navier–Stokes equation

–
η(γ̇ , T)

ρ
�u + (u · ∇)u +

1
ρ

∇p = F in Ω ,

div u = 0 in Ω

(1)

with velocity u, pressure p and density ρ . The viscosity η(γ̇ , T) depends on the shear rate
γ̇ and temperature T . The temperature is assumed to be constant due to the controlled
heating of the spin pack block. The source term F is set to zero everywhere except in the
Filter where it is used to model a porous medium.

The shear rate is defined through the rate-of-deformation tensor D̄ by (see [7])

γ̇ =
√

1
2

D̄ : D̄

and the tensor is given by

D̄ = (∂iuj + ∂jui)ij.

In order to model the viscosity a Cross model [8, Ch. 3.6] is used

η(γ̇ , T) = H(T)
η0

1 + (λγ̇ )1–n (2)

with zero-shear-rate viscosity η0, time constant λ and power-law index n. The temperature
dependence is modeled through an Arrhenius law by

H(T) = exp

(
α

(
1
T

–
1

Tα

))
(3)

with activation energy α and reference temperature Tα .
The Filter is modeled as a porous medium by adding a source term to the momentum

equation [7]

F = Cfilter
1
2
ρ|u|u in Ωfilter,

F = 0 in Ω \ Ωfilter,
(4)

where Ωfilter is the filter part of the computational domain (see Fig. 1). Typically the filter
screens used in polymer spin packs are woven meshes made from metal wire and the pore
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Figure 2 Sketch of a geometry of the Surrogate
Model with boundary partition

size as well as the number of pores per area are known. If one assumes equal flow rates
per filter area it is possible to estimate the inertial loss coefficient Cfilter from simulating
the flow through a single pore. This assumption of uniform flow rates often holds because
the Filter generates a significant pressure drop compared to its surroundings (cf. Fig. 9).

Once the flow has been computed the residence time needs to be quantified. This is done
by evaluating the residence time for a finite number of pathlines through the spin pack.
Typically, we use the pathlines which end in the center of every capillary. The distribution
of the residence times for the individual pathlines is used to compare the residence time
distribution for different spin pack designs (cf. Fig. 8). The residence time for a single
pathline is computed in the following way: Let xout be a point on the outlet, for example
in the center of a capillary. The pathline is computed in reverse order by solving the ODE

ẋ(t) = –u(x),

x(0) = xout.
(5)

Note, that the sign in front of the velocity u is negative because the pathline is traced in
reverse direction from outlet to inlet. The residence time for this individual pathline is
then the time t at which the pathline reaches the inlet boundary.

2.2 Surrogate model: Newtonian Stokes
The goal is now to optimize the geometry such that the residence time distribution is short
and with small deviations. To do this a number of simplifications leading to the Surrogate
Model are introduced in the following.

Simplification 1: geometry. Instead of the full spin pack geometry depicted in Fig. 1 we
only consider Cavity 1 for our Surrogate Model. This is signified because typically most
of the residence time is spent in this cavity. The boundary decomposed into an inlet part
Γ in, a wall part Γ wall and an outlet part Γ out (see Fig. 2).

Furthermore, the Filter sitting below the cavity is accounted for in the outlet boundary
condition through a Darcy law [9, Eq. 1.2] which yields a relation between normal velocity
and pressure:

nout(n · u) = –
kout

η

p – pamb

Lout
on Γ out (6)

with the porosity nout, the permeability kout, the ambient pressure pamb and the thickness
of the filter Lout. It is important to consider the filter to get the correct velocity at the outlet.
The filter typically generates a much higher pressure drop than the friction of the cavity.
This basically results in equal flow rates throughout the whole outflow boundary.

Simplification 2: Newtonian viscosity. Typical polymers used for fiber production are
non-Newtonian and shear thinning plays a role, i.e., higher shear rates lead to a lower
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viscosity. However, for most applications the shear thinning only occurs in the fine cap-
illaries. The shear rates in the distributor cavities usually lie in the zero shear rate limit
of the Cross model [8, Ch. 3.6] used to represent the viscosity (cf. Fig. 6). Thus we use a
constant viscosity

η(γ̇ , T) = η = const,

which is independent of the shear rate.
Simplification 3: Stokes equation. Inertia does not play a role for the flow within the

spin pack cavity, due to the high viscosity compared to the low velocities. Therefore, the
Navier–Stokes equation can be replaced by the Stokes equation. The previous simplifica-
tion lead to the following problem:

–η�u + ∇p = 0 in Ω ,

div u = 0 in Ω ,

u = nu0 on Γ in,

u = 0 on Γ wall,

cout(n · u) + p = 0 on Γ out,

n × u = 0 on Γ out,

(7)

where u0 is a given inflow profile and n the outward pointing normal vector. With

cout =
noutηLout

kout

and w.l.o.g. pamb = 0 the outflow boundary condition agrees with (6). The well-posedness
of the Stokes problem for these specific boundary conditions follows from [10, Prop.
4.7].

Simplification 4: wall shear stress objective. We use a cost function based on the wall
shear stress as an indirect criterion to optimize the residence time. The reason is that the
wall shear stress

σ = η|∇ × u| on Γ wall

can be directly evaluated from the flow in contrast to the residence time which involves an
additional equation (5). Furthermore, when dealing with (5) it can happen that a pathline
does not reach the end due to numerical reasons. This leads to discontinuities in the cost
function and poses a problem for a gradient-based optimization approach.

The idea for using the wall shear stress is the following: Dead spaces and regions with
slow flow velocities where degradation can take place usually occur in close proximity to
the walls. A low wall shear stress coincides with a slow velocity zone. On the other hand a
sufficiently high level of stress throughout the wall prevents dead spaces and reduces the
residence time.
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This motivation leads to the following shape optimization problem:

min
Ω

subject to (7)

J(Ω) =
∫

Γ wall

(
η|∇ × u| – σd

)2 ds, (8)

where σd is a sufficiently high target wall shear stress.

2.3 Numerical shape optimization for the surrogate model
Let us derive the shape optimization approach for the Surrogate Model (8).

Geometry variations. Starting from any admissible domain Ω0 ⊂ R
3 of class C1,1 we

want to compute a gradient Vg which enables us to use a gradient descent approach for
solving the shape optimization problem. Knowing the gradient we can perform a descent
step towards the domain Ω–sVg = (Id – sVg)(Ω0) for some step size s > 0. Let

V1 :=
{

V ∈ C1,1(
R

3,R3); V|Γ in
0 ∪Γ out

0
= 0

}
,

Θ1 :=
{
θ ∈ V1;‖θ‖C1,1(R3,R3) <

1
2

}
.

(9)

We define Ωθ := (Id + θ )(Ω0) which is again of class C1,1 (see Remark 1) and consider the
problem

–μ�u(θ ) + ∇p(θ ) = 0 in Ωθ ,

div u(θ ) = 0 in Ωθ ,

u(θ ) = u0 on Γ in
θ ,

u(θ ) = 0 on Γ w
θ ,

cout
(
n · u(θ )

)
+ p(θ ) = 0 on Γ out

θ ,

u(θ ) × n = 0 on Γ out
θ

(10)

with wall shear stress

σ (θ ) = μ
∣∣∇ × u(θ )

∣∣|Γ w
θ

= μ

√(∇ × u(θ )
) · (∇ × u(θ )

)|Γ w
θ

. (11)

Remark 1 For θ ∈ Θ1 it is implied by [11] that Id + θ : R3 → R
3 is an invertible (1, 1)-

diffeomorphism and thus Ωθ = (Id + θ )(Ω0) is also of class C1,1. Then, a regularity argu-
ment similar to [12] would yield u(θ ) ∈ [H2(Ωθ )]3, thus σ (θ ) ∈ L2(Γ w

θ ) by the Trace Theo-
rem [13, Thm. 8.7] and the objective (8) is well-defined. However, the focus of the current
paper lies in the application and we will not derive the regularity result for our specific set
of boundary conditions (10). We will rather use Assumption 1 and derive the gradient in
a purely formal way.

Remark 2 The C1,1 regularity of the domain can probably be relaxed further: If should
suffice if the wall boundary Γ w

θ is C1,1. Therefore, sharp corners between inlet/outlet and
the wall should be allowed which is reasonable for the application (cf. Figs. 3 and 4). This
is further signified by the numerical results.
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Figure 3 Cavity A: Optimal distributor geometry for a target wall shear stress of σd = 0.1

Figure 4 Cavity B: Optimal distributor geometry for a target wall shear stress of σd = 0.2

Sensitivity analysis. In order to compute the sensitivity we follow the optimize then dis-
cretize approach. Therefore, we need to differentiate the cost functional and the partial
differential equation with respect to the shape, which requires the existence of the cor-
responding shape derivatives. However, the focus of this part is to derive a numerical
method suited to solve the industrial problem, therefore, we omit the existence and regu-
larity proofs for the shape derivatives and make the following assumption:

Assumption 1 Assume the existence of u(θ ) ∈ H2(Ωθ ,R3), p(θ ) ∈ H1(Ωθ ) and σ (θ ) ∈
L2(Γ w

θ ) for θ ∈ Θ1 and the existence of the shape derivatives u′(Ω0; V) ∈ H2(Ω0,R3),
p′(Ω0; V) ∈ H1(Ω0) and σ ′(Γ0; V) ∈ L2(Γ w

0 ) for V ∈ V1.

A crucial point in the proof would be to show the regularity of the solution of the Stokes
problem which is not trivial due to the mixed boundary condition. If this regularity is
provided by some means we can use the implicit function theorem to show the existence of
the material derivatives which provide the existence of the shape derivatives. This general
approach to proof the existence of shape derivatives for partial differential equations is
shown in [11]. In [3] we have applied this approach to a problem similar to the Surrogate
Model considered here.
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Definition 1 (Shape derivative [14]) For m ≥ 1 let y(sV) ∈ Hm((Id + sV) ◦ Ω0) for s ∈ R

sufficiently small. Then, the shape derivative of y in direction V is defined by

y′(Ω0, V) := lim
s→0

1
s
(
y(sV) ◦ (Id + sV) – y(0)

)
– ∇y(0) · V ∈ Hm–1(Ω0).

Furthermore, the shape derivative of y restricted to the boundary is

y′(Γ0, V) := y′(Ω0, V)|Γ0 + ∂ny(0)(n · V) ∈ Hm– 3
2 (Γ0).

For details and a more general definition of the shape derivatives we refer to [14].

The cost function

J(Ωθ ) =
∫

Γ w
θ

(
σ (θ ) – σd

)2 ds (12)

is differentiated with respect to θ . The derivative of a boundary integral is given in [14].
Applying this to (12) yields for the derivative in direction V ∈ V1

dJ(V) =
dJ(Ωθ )

dθ
(V)

=
∫

Γ w
0

((
σ (θ ) – σd

)2|Γ w
θ

)′(Γ0; V) ds +
∫

Γ w
0

κ(n · V)
(
σ (0) – σd

)2 ds, (13)

where κ denotes the curvature (see [14]).
We assume that the wall shear stress σ (0) is nonzero on the wall boundaries. For geome-

tries with one inflow and one outflow this is fulfilled automatically. For more complicated
geometries we may have to exclude neighborhoods of stagnation points from the wall
boundaries. If this assumption holds, we can derive the shape derivative of σ (θ ) by

σ ′(Γ0; V) =
μ

2
√∇ × u(0) · ∇ × u(0)

((∇ × u(θ ) · ∇ × u(θ )
)|Γ w

θ

)′(Γ0; V)

=
μ2

σ (0)
∇ × u(0) · (∇ × u(θ )|Γ w

θ

)′(Γ0; V)

=
μ2

σ (0)
∇ × u(0) · ((∇ × u′(Ω0; V)

)|Γ w
0

+ (n · V)∂n
(∇ × u(0)

))
. (14)

Thus (13) becomes

dJ(V) =
∫

Γ w
0

2μ2 σ (0) – σd

σ (0)
∇ × u(0) · ∇ × u′(Ω0; V) ds

+
∫

Γ w
0

2μ2 σ (0) – σd

σ (0)
∇ × u(0) · ∂n

(∇ × u(0)
)
(n · V) ds

+
∫

Γ w
0

κ
(
σ (0) – σd

)2(n · V) ds. (15)
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We need to deal with the first term of (15) which contains the shape derivative u′(Ω0; V).
As shown in [15] the shape derivative (u′(Ω0; V), p′(Ω0; V)) can be computed as the solu-
tion of

–μ�u′(Ω0; V) + ∇p′(Ω0; V) = 0 in Ω0,

div u′(Ω0; V) = 0 in Ω0,

u′(Ω0; V) = 0 on Γ in
0 ,

u′(Ω0; V) = –(n · V)∂nu(0) on Γ w
0 ,

cout
(
n · u′(Ω0; V)

)
+ p′(Ω0; V) = 0 on Γ out

0 ,

u′(Ω0; V) × n = 0 on Γ out
0 .

(16)

We introduce the adjoint variables (v, q) as solutions of the adjoint Stokes problem

–μ�v + ∇q = 0 in Ω0,

div v = 0 in Ω0,

v = 0 on Γ in
0 ,

n · v = 0 on Γ w
0 ,

v × n = 2μ
σ – σd

σ

(∇ × u(0)
)

on Γ w
0 ,

cout(n · v) + q = 0 on Γ out
0 ,

v × n = 0 on Γ out
0 .

(17)

Then, we can derive through integration by parts

0 =
∫

Ω0

(
–μ�u′(Ω0; V) + ∇p′(Ω0; V)

) · v dx +
∫

Ω0

div u′(Ω0; V)q dx

=
∫

Ω0

μ∇ × u′(Ω0; V) · ∇ × v dx +
∫

Γ0

μ∇ × u′(Ω0; V) · (v × n) ds

–
∫

Ω0

p′(Ω0; V) div v dx +
∫

Γ0

p′(Ω0; V)n · v ds

+
∫

Ω0

u′(Ω0; V) · ∇q dx –
∫

Γ0

n · u′(Ω0; V)q ds

= –
∫

Ω0

μu′(Ω0; V) · �v dx +
∫

Γ0

μ∇ × u′(Ω0; V) · (v × n) ds

–
∫

Γ0

μ
(
u′(Ω0; V) × n

) · ∇ × v ds +
∫

Γ0

ηoutn · u′(Ω0; V)n · v ds

+
∫

Ω0

u′(Ω0; V) · ∇q dx –
∫

Γ0

ηoutn · u′(Ω0; V)n · v ds

=
∫

Γ0

μ∇ × u′(Ω0; V) · (v × n) ds –
∫

Γ0

μ
(
u′(Ω0; V) × n

) · ∇ × v ds, (18)
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which yields the identity

∫
Γ w

0

2μ2 σ (0) – σd

σ (0)
∇ × u(0) · ∇ × u′(Ω0; V) ds

= –
∫

Γ w
0

μ
(
∂nu(0) × n

) · ∇ × v(n · V) ds. (19)

Plugging this identity into (15) yields

dJ(V) = –
∫

Γ w
0

μ
(
∂nu(0) × n

) · ∇ × v(n · V) ds

+
∫

Γ w
0

2μ2 σ (0) – σd

σ (0)
∇ × u(0) · ∂n

(∇ × u(0)
)
(n · V) ds

+
∫

Γ w
0

κ
(
σ (0) – σd

)2(n · V) ds. (20)

Discretization. Following the optimize then discretize approach we us Taylor–Hood fi-
nite elements to discretize the partial differential equations. The implementation is done
in COMSOL Multiphysics.

Using the space V1 for the numerics is not reasonable because it would require the pro-
jection of the gradient into a high order Sobolev space which has an embedding into C1,1.
For our approach numerical results have shown that H2-regularity of the gradient is suf-
ficiently smooth, even though there is no embedding from H2 into C1,1. Therefore, in the
discrete problem the space V1 is replaced with

H2
k :=

{
V ∈ H2(Ωk ,R3); V|Γ in

k ∪Γ out
k

= 0
}

.

The discrete gradient is then obtained by projecting dJ(ν) into H2
k by solving

(Vk ,ν)H2(Ωk ) = dJ(ν) for all ν ∈H2
k , (21)

with Vk ∈H2
k where (·, ·)H2(Ω0) denotes the scalar product in H2.

Gradient descent method. In the last section the gradient of the cost function was de-
rived, which enables us to apply the gradient descent method to solve the shape optimiza-
tion problem. A small change of notation is performed: In the following let Ωk denote the
domain of iteration k of the gradient descent algorithm and the gradient at Ωk is denoted
by Vk . Using this notation the gradient descent method is given in Algorithm 1. An Armijo
rule (cf. [16]) was used to determine the step length, where β ,γ > 0 are proper constants.
Note, that the L2-norm was used for step size control and stopping criterion. However,
with the state space Vk ∈ H2

k the H2-norm might be a better choice. We do not expect
that this would significantly change the results, but it might improve the convergence.

Moving the mesh. This section explains how the mesh is moved and what smoothing
operator ST is used. An important question is how the shape deformation Ωk+1 = (Id –
β jVk)(Ωk) is carried out. In the current setup we work with a triangulation Tk of Ωk by
tetrahedral elements. Then we move every vertex ξ ∈ Tk to (Id – β jVk)(ξ ) to generate the
new mesh Tk+1. In the case that any elements of the mesh are inverted we regenerate Tk+1

while keeping the boundary triangulation.
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Algorithm 1 L2 Shape Optimization (3D)
1: Let the target wall shear stress σd and initial domain Ω0 ⊂R

3 be given. Set k = 0.
2: loop
3: Solve Stokes equation (10) for (u, p) on Ωk .
4: Solve adjoint Stokes (17) for (v, q) on Ωk .
5: Solve: Find Vk ∈H2

k with (Vk ,ν)H2(Ωk ) = dJ(ν) for all ν ∈H2
k .

6: if ‖Vk‖L2(Ωk ) ≤ εtol‖V0‖L2(Ω0) then
7: return
8: end if
9: j ← 0

10: while J(Ωk) – J((Id – β jVk)(Ωk)) < γβ j‖Vk‖2
L2(Ωk ) do

11: j ← j + 1
12: end while
13: Ωk+1 = (Id – β jVk)(Ωk)
14: Smooth the mesh: Ωk+1 ← ST (Ωk+1)
15: k ← k + 1
16: end loop

However, a problem is that the mesh tends to loose smoothness and becomes irregular.
This has the effect that already after very few iterations the gradient fails to provide a
proper descent direction and the algorithm stops. This is a common problem in shape
optimization, as discussed in [15]. To overcome this we apply a smoothing operator ST to
the deformed mesh. The operator is applied to the boundary mesh and is able to recover
a boundary shape with more regularity. Of course the in- and outflow boundaries are not
effected by the smoothing. We use the implementation [17] which relies on [18]. Using
the smoothing step leads to a good quality of the gradient and a stable gradient descent
algorithm. See [2, Theorem 6.5] where we have shown the existence of an optimal control
for a similar problem.

3 Results and discussion
In the following Algorithm 1 bases on the Surrogate Model is used to compute optimized
cavities. These cavities are then tested with the Full Model. A dimensionless setting was
used for the optimization, while the validation was done in a realistic setting with units
given later.

3.1 Shape optimization based on the surrogate model
With the presented shape optimization approach it becomes possible to design cavities
with a specific wall shear stress profile. Figures 3 and 4 show two cavities with a constant
target wall shear stress of σd = 0.1 and σd = 0.2, respectively. Full details on the setup for
deriving these shapes can be found in [2]. The wall shear stress is indicated by color and we
see that it is possible to get a very close agreement between target and actual wall shear
stress throughout wide parts of the geometries. This agrees with our theoretical results
from [3] which suggests that the space of attainable wall shear stress profiles is rather
large. Results on the convergence of Algorithm 1 are illustrated in Fig. 5. The convergence
rates can likely be improved by using more advanced techniques then gradient descent
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Figure 5 Convergence of the cost functional and the relative gradient norm using Algorithm 1 to compute
Cavity A with different mesh sizes h

(cf. [19]). However, for our current applications this simple gradient descent approach has
proven to be sufficient.

3.2 Validation based on the full model
While we have seen that the proposed shape optimization algorithm is able to design dis-
tributor cavities with a very uniform wall shear stress it remains to show how these cavi-
ties perform in a realistic application. In this section a typical reference spin pack design is
compared to optimized designs. The reference design is shown in Fig. 1. In the reference
design Cavity 1 is just a flat rectangular-shaped space which is quite common for many
spin packs still in use today. However, this space is very vulnerable to dead spots which
can then encourage polymer degradation due to long residence times. Therefore in the
following Cavity 1 will be replaced by the two optimized cavities computed in Sect. 3.1
and results regarding residence time, wall shear stress and pressure drop are compared.

The commercial CFD software ANSYS® Fluent is applied to model the spin pack in this
validation step.

Geometric setup, data and boundary conditions. The geometry of our reference spin
pack with 279 nozzles is depicted in Fig. 1. The spacial dimensions of the bounding box
are: 286 mm x 146 mm x 96 mm (length x width x height). In the following three geometries
are compared:

• Reference: The reference design from Fig. 1.
• Optimized A: Cavity 1 of the reference design replaced with the optimized cavity from

Fig. 3 (Cavity A).
• Optimized B: Cavity 1 of the reference design replaced with the optimized cavity from

Fig. 4 (Cavity B).
These spin pack geometries can be seen from Fig. 7.

Polypropylene (PP) is used as the polymer. Raw data on the viscosity is taken from [20,
Fig. 3.3-13] and the cross model was fitted to agree as good as possible. See Fig. 6 for a
comparison of the literature data (markers) and the fitted cross model (lines). The fitted
coefficients of the cross model are given in Table 2. Furthermore, a constant density of
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Figure 6 Viscosity of Polypropylene (PP) from Springer Handbook of Condensed Matter and Materials Data
[20, Fig. 3.3-13] and fitted cross model with coefficients from Table 2

Table 2 Cross model coefficients to model the viscosity of Polypropylene (PP) in Fig. 6

zero-shear-rate viscosity η0 6421.8 Pa s
time constant λ 0.6304 s
power-law index n 0.4276
activation energy α 3742.5 K
reference temperature Talpha 473.16 K

ρ = 900 kg m–3 [20, Table 3.3-5] and a constant temperature of T = 237◦ was used. The
inertial resistance coefficient for the filter was set to Cfilter = 1e + 13 m–1. For the applied
mass flow rate this results in a pressure drop of about 5 bar through the filter. At the inlet
a constant mass flow of 41 kg h–1 was set. The velocity profile itself is then determined
by the solver. At all outlets of the 279 capillaries an outflow boundary condition with zero
ambient pressure was set. At the boundaries of the porous Filter a slip condition was used
because friction is already represented in the source term. No-slip boundary conditions
were used on all other boundaries.

Numerical results. Simulations for the given setup for the Full Model were performed
with ANSYS® Fluent for the reference design, as well as for the two optimized designs
(Optimized A and Optimized B). Results for the wall shear stress in Cavity 1 are shown in
Fig. 7. The wall shear stress in the reference design Fig. 7(a) is very low, especially in the
outer regions which indicates stagnation zones. The wall shear stress for the optimized
designs in Fig. 7(b) (Optimized A) and Fig. 7(c) (Optimized B) is significantly higher. As
intended by the shape optimization approach the wall shear stress is very uniform. This
shows that the shapes obtained with the Surrogate Model are still valid with the Full Model.
Note, that the absolute level of the wall shear stress differs between the optimization step
(Figs. 3 and 4) and the validation step (Fig. 7). The reason is that the optimization step was
carried out in a dimensionless setting, while typical real world values were used for the
validation step.

In order to quantify and compare the residence time we compute a representative num-
ber of pathlines through the spin pack (cf. (5)). Specifically the 279 pathlines which end in
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Figure 7 Comparison of the wall shear stress in Cavity 1 for the three spin pack designs. Furthermore, the 279
pathlines which end in the center of each capillary are shown

the centers of each capillary outlet were traced back in time along the velocity field until
they reach the inlet. These pathlines are also depicted in Fig. 7. For each pathline the total
residence time spent in the whole spin pack is measured as well as the residence time for
each component. Figure 8 shows a box plot of the residence times for the three design
variations. The black horizontal line in the center of the colored region represents the
median. The colored region reaches from the 25%-quantile to the 75%-quantile and the
whiskers from the 5%-quantile to the 95%-quantile. The rightmost boxes show the total
residence time spent in the spin pack while the others are the breakdown to the individual
components. For the reference design most of the residence time is spent in Cavity 1. The
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Figure 8 Comparison of the residence times measured along 279 representative pathlines for the three
geometric design variations

Figure 9 Pressure plotted vs. the height of the spin pack. There are only minimal differences in pressure
between the three geometric cases

optimized designs show a significant reduction of the residence time in Cavity 1 as well as
for the total time. Also the spread of residence time was greatly reduced.

Before we end our investigation we check the level of pressure. Naturally, an increased
wall shear stress results in an increased pressure drop through the spin pack. Not to cause
any other problems we have to make sure that this additional pressure drop stays moder-
ate. Again we use the pathlines to plot the pressure. Figure 9 shows the pressure plotted
vs. the height direction. The pressure is nearly constant in each layer with equal height. So
there are no visible differences between the individual pathlines for the same geometric
case. But also the pressure differences between the reference case and the two optimized
versions are minimal and only slightly visible in the Cavity 1 and Tube region. Further-
more, we see that the main pressure drop is generated by the fine capillaries, followed by
the Filter which sits at the top of the Breaker Plate. The two cavities are only responsible
for a very small drop in pressure.
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4 Conclusion
The presented shape optimization approach is able to generate cavities with specific wall
shear stress profiles. This has proven to be an effective tool in the optimization of poly-
mer spin packs and filter devices for sensitive applications. It is now possible to design
geometries without dead spaces and with short and more uniform residence times. The
optimization approach uses the Surrogate Model as a simplification. However, the valida-
tion has shown that the cavities optimized with the simplified model are still valid in the
more realistic setting of the Full Model. We have further seen that cavities with optimized
wall shear stress lead to reduced and more uniform residence times within the spin pack
while the increase in pressure stays minimal. Our ongoing and future research on this
matter includes the use of parameterized geometries to improve the regularity as well as
optimizing the residence time directly without the use of wall shear stress as an indirect
criterion.
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