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Abstract
Silicon nanowires (SiNWs) are quasi-one-dimensional structures in which electrons
are spatially confined in two directions and they are free to move in the orthogonal
direction. The subband decomposition and the electrostatic force field are obtained
by solving the Schrödinger–Poisson coupled system. The electron transport along the
free direction can be tackled using a hydrodynamic model, formulated by taking the
moments of the multisubband Boltzmann equation. We shall introduce an extended
hydrodynamic model where closure relations for the fluxes and production terms
have been obtained by means of the Maximum Entropy Principle of Extended
Thermodynamics, and in which the main scattering mechanisms such as those with
phonons and surface roughness have been considered. By using this model, the
low-field mobility of a Gate-All-Around SiNW transistor has been evaluated.
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1 Introduction
In the last decades nanotechnologies made possible the production of innovative de-
vices with promises of high density integration, for an exponential increasing of elec-
tronic systems complexity. Nanostructures and nanotechnologies are reaching important
breakthroughs in single molecule sensing and manipulation, with fundamental applica-
tions. In particular, among these nanostructures, silicon nanowires (SiNW) are largely
investigated for the central role assumed by Silicon (Si) in the semiconductor industry.
Such device can be used as transistors [1, 2], logic devices [3], and thermoelectric coolers
[4, 5], but also for other application fields such as biological and nanomechanical sensors
[6, 7]. When the physical size of the system becomes smaller, quantum effects on electronic
properties become important and then a description via quantum mechanics is required.
These quantum effects arise in systems which confine electrons to regions comparable to
their de Broglie wavelength.

In a nanowire (NW) the electronic states become subject to quantization in the two-
dimensional transversal section, and the transport is due to the one-dimensional electron
gas in the longitudinal dimension.
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2 Methods
Charge transport in SiNWs, under reasonable hypotheses on the device’s dimensions, can
be tackled using the 1-D Multiband Boltzmann Transport Equation (MBTE) coupled self-
consistently with the 3-D Poisson and 2-D Schrödinger equations, in order to obtain the
self-consistent potential and subband energies and wavefunctions. However, solving the
MBTE numerically is not an easy task, because it forms an integro-differential system in
two dimensions in the phase-space and one in time, with a complicate collisional operator.
An alternative is to take the moments of the MBTE to obtain hydrodynamic-like models
where the resulting system of balance equations can be closed by resorting to the Maxi-
mum Entropy Principle (MEP).

In the following we shall focus primarily on the mathematical method itself, whereas a
minor emphasis will be given to the physical model, because some simplifications will be
made which could lead to doubtful results.

3 Transport physics in SiNWs
In SiNWs the band structure is altered with respect to the bulk silicon, depending on
the cross-section wire dimension, the atomic configuration, and the crystal orientation.
Atomistic simulations are able to capture the nanowire band structure, including infor-
mation about band coupling and mass variations as functions of quantization [8–13]. In
this paper we shall limit ourselves to the results obtained via the empirical Tight-Binding
(TB) model [9].

For a rectangular SiNW with longitudinal direction along the [100] crystal orientation,
confined in the plane (y, z), the 1-D Brillouin zone is 1/2 as long as the length of the bulk
Si Brillouin zone along the � line (i.e. π/a0). In SiNW the six equivalent � conduction
valleys of the bulk Si are split into two groups because of the quantum confinement. The
subbands related to the four unprimed valleys �4 ([0 ± 10] and [00 ± 1] orthogonal to
the wire axis) are projected into a unique valley in the Γ point of the one-dimensional
Brillouin zone. The subbands related to the primed valleys �2 ([±100] along the wire
axis) are found at higher energies and exhibit a minimum located at kx = ±0.37π/a0. The
SiNW band gap, as well as the energy splitting between the �2–�4 valleys increases with
decreasing diameter of the nanowire. Moreover the subband isotropy break down at en-
ergies of the order of 150 meV above the (bulk) conduction-band maximum. From the
energy dispersion relation E(k) obtained from the TB, one can evaluate the effective mass
m∗ in the parabolic spherical band approximation. In this paper we shall consider the pa-
rameters obtained in [9] (see Table 1), which are valid for diameters greater then 3 nm.
These values will certainly be affected by non-parabolic corrections.

The main quantum transport phenomena in SiNWs at room temperature, such as the
source-to-drain tunneling, and the conductance fluctuation induced by the quantum in-
terference, become significant only when the channel lengths are smaller than 10 nm [14].
For longer longitudinal lengths, which is the case we are going to simulate, semiclassical
formulations based on the 1-D BTE can give reliable terminal characteristics when it is
solved self-consistently by adding the Schrödinger–Poisson equations in the transversal
direction.

In the following, we shall consider a SiNW having rectangular cross section (with di-
mensions Ly, Lz) in which electrons are spatially confined in the y–z plane by a SiO2 layer
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Table 1 Silicon nanowire constants

Symbol Physical constant Value

me electron rest mass 9.1095 × 10–28 g
m ∗ A effective mass A =�4 valley [9] 0.27me

m ∗ B effective mass B =�2 valley [9] 0.94me

TL lattice temperature 300 K
ρ mass density 2.33 g/cm3

vs average sound speed 9 × 105 cm/s
Dac acoustic-phonon deformation potential 9 eV
Do intra-valley deformation potential g-scat [27] 1.1 × 109 eV/cm
∼ ωo intra-valley phonon energy [27] 63.3 meV
Zo number equivalent valleys [27] 1
Div inter-valley deformation potential f-scat [27] 2 × 108 eV/cm
∼ ωiv inter-valley phonon energy [27] 47.48 meV
Ziv number equivalent valleys [27] 2
ε0A A =�4 valley energy minimum [9] 0
ε0B B =�2 valley energy minimum [9] 117 meV
�sr rms height [27] 0.3 nm
λsr correlation length [27] 1.5 nm

Figure 1 SiNW transistor. Cross sections of the Gate-All-Around SiNW transistor

which gives rise to a deep potential barrier having U = 3.2 eV, and free to move in the or-
thogonal x direction, having dimension Lx (see Fig. 1). Hence, it is natural to assume the
following ansatz for the electron wave function

φ(x, y, z) = χ
μ

l (y, z)
eikxx
√

Lx
, (1)

where μ is the valley index (one �4 valley and two �2 valleys), l = 1, Nsub the subband
index, χ

μ

l (y, z) is the subband wave function of the
√

lth subband and μth valley, and the
term eikxx/Lx describes an independent plane wave in x-direction, with wave-vector kx.
The spatial confinement in the (y, z) plane is governed by the Schrödinger–Poisson system
(SP)

⎧
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∑
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(2)

where ND, NA are the assigned doping profiles (due to donors and acceptors), and
Vtot(x, y, z) = U(y, z) – eV (x, y, z) (in the Hartree approximation). The electron density n[V ]
is given by (2)4, where ρ

μ

l (x, t) is the linear density in the μ-valley and l-subband which
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must be evaluated by the transport model (hydrodynamic/kinetic) in the free movement
direction. We emphasize that the use of the effective mass approximation (2)1 is probably
valid for semiconductor nanowires down to 5 nm in diameter, below which atomistic elec-
tronic structure models need to be employed [15, 16]. The SP system forms a set of coupled
nonlinear Partial Differential Equations, which are usually solved by an iteration between
Poisson and Schrödinger equations. Since a simple iteration by itself does not converge,
it is necessary to introduce an adaptive iteration scheme [17], where the Poisson equation
has been solved by the finite-difference scheme proposed in [18], which can be used for
every cross-section shape of the wire with complex geometries of the boundary/interface.

Transport in the free direction is described by the multisubband Boltzmann Transport
Equation (MBTE) [19]

∂f μ

l
∂t

+ vμ(kx)
∂f μ

l
∂x

–
1
�

∂ε
μ

l
∂x

∂f μ

l
∂kx

=
∑

ηl′
Cη

[
f μ

l , f μ

l′
]

+
∑

μ

∑

μ′ �=μ

∑

l′
Cη

[
f μ

l , f μ′
l′

]
, (3)

where f μ

l = f μ

l (x, kx, t) is the electron distribution function, vμ = ∼kx/m∗
μ is the electron

group velocity. The RHS of equation (3) is the collisional operator, which is split into two
terms modeling respectively scattering in the same valley (i.e. intra-valley with μ = μ0)
and into different valleys (i.e. inter-valley with μ6 = μ0). In the low density approximation
(not degenerate case), the collisional term for the ηth scattering rate is:

Cη

[
f μ

l , f μ′
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, (4)

where wη(k′
x,μ′, l′, kx,μ, l) is the ηth scattering rate. Phonon scattering has been tackled

following the bulk Si scattering selection rules [12] whose details are given in [20]. But this
is no more than a simplification, because major differences in the transport properties can
appear including confined phonons [21] and anisotropic deformation potentials [22].

Finally, another key scattering mechanism in SiNW is the Surface Roughness (SR) scat-
tering. This is due to the random fluctuations of the boundaries that nominally form the
confining potential in such a low-dimensional system. It depends on quantum confine-
ment as well as it also depends very strongly on the charge density. The SR scattering can
be in principle intra-valley or intervalley. However, its dependence on the transfer crys-
tal momentum usually renders intervalley processes weaker. This scattering mechanism
can be treated at very different levels of approximation, from fully atomistic models to
semi-phenomenological models (see [23, 24]). In the following we shall use a very simple
model introduced in [21], where imagecharge effects (due to the mismatch of the dielectric
constants between Si and SiO2), and exchange-correlation energy (due to the electron–
electron interaction) are neglected, which is reasonable for silicon thickness greater than
8 nm [25]. Moreover corner effects [26] have been neglected. In this case the SR scattering
rate along the y-direction is
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where H(x) is the Heaviside function, Ey(x, y, z) = – ∂V
∂y , �sr and λsr are the rms (root mean

square) height and the correlation length of the fluctuations at the Si–SiO2 interface

a = k2
x +

2m∗
μ

�

(
ε

μ

l – ε
μ

l′
)
, Fμμ

ll (Ey) =
∫

(
χ

μ

l
)�(y, z)Ey(x, y, z)χμ

l′ (y, z) dy dz (6)

and χ
μ

l , εμ

l are given by solving equation (2). All parameters are listed in Table 1.

4 Extended hydrodynamic model
One of the most popular approaches is to solve the MBTE in a stochastic sense by Monte
Carlo (MC) methods [21, 27–29] or by using deterministic numerical solvers [27, 30].
However, the extensive computations required by both methods as well as the noisy results
obtained with MC simulations, make them impractical for device design on a regular basis.

Another alternative is to obtain from the MBTE hydrodynamic models that are a
good engineering-oriented approach. This can be achieved by obtaining a set of balance
equations by means the so called moment method. The idea is to investigate only some
moments of interest of the distribution function. In this way a hierarchy of balance equa-
tions is obtained, which can be truncated at some order, supposing to determine the (un-
knowns) higher-order moments as well as the production terms (i.e., the moments on the
collisional operator). In the last two decades, the Maximum Entropy Principle (MEP) has
been successfully employed to close this hierarchy of balance equations. Important results
have also been obtained for the description of charge/thermal transport in devices made
both of elemental and compound semiconductors, in cases where charge confinement is
present and the carrier flow is two- or one-dimensional (see [31] for a review). By multi-
plying both sides of the MBTE equation (3) by the weight functions

−→
ψ = (1, vμ,Eμ,Eμvμ), vμ =

�kx

m∗
μ

, Eμ =
�

2k2
x

2m∗
μ

and integrating with respect to kx, balance equations are obtained in the moment un-
knowns (ρμ

l , V μ

l , W μ

l , Sμ

l ), from which one can evaluate

ρ =
∑

μ,l

ρ
μ

l total linear density, (7)

V =
∑

μ,l ρ
μ

l V μ

l

ρ
mean velocity, (8)

W =
∑

μ,l ρ
μ

l W μ

l

ρ
mean energy, (9)

S =
∑

μ,l ρ
μ

l Sμ

l

ρ
mean energy flux. (10)

By exploiting the MEP, constitutive relations for the higher-order moments and the pro-
duction can be obtained (see [32] for the details). In this way a physics-based hydrody-
namic model is obtained, consistent with thermodynamics principles, valid in a larger
neighborhood of local thermal equilibrium, and free of any tunable parameters.
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5 Results and discussion
The main goal of this paper is to check if the above mentioned Extended hydrodynamic
model is able to describe the quasi-equilibrium regime. Taking advantage of examples
present in literature, we have considered a Gate-All-Around (GAA) SiNW transistor, with
quadratic cross section. This is a Silicon nanowire with an added gate wrapped around it,
in such a way we have a three contact device with source, drain, and gate. The device length
is Lx = 120 nm, the transversal dimensions Ly = Lz ≤ 10 nm, and the oxide thickness tox
is 1 nm. The device is undoped, at room temperature and its cross sections are shown in
Fig. 1.

An important parameter characterizing the quasi-equilibrum regime, useful for bench-
marking different technology options and device architectures, is the low-field mobility
[33, 34]. It is defined as the ratio between the average electron velocity, evaluated in the
stationary regime, and a driving low electric field E, i.e.,

μlow =
∑

A ρAμA
∑

A ρA , μA =
∑

l V A
l

E
, ρA =

∑

l

ρA
l , (11)

where μA are the mobilities in the respective valleys, evaluated as function of the gate
voltage VG. The subband densities ρA

l and velocities V A
l are determined by solving the

former hydrodynamic model with the following steps:
(i) equilibrium solution

First of all, let us consider the thermal equilibrium regime where no voltage is applied to
the contacts, i.e., VS = VD = VG = 0 and no current flows. Hence, the electron distribution
function is the Maxwellian:

f μ(eq)
l (kx) = N0 exp

(

–
�

2k2
x

2m∗
μ

+ ε
μ

lx + ε0
μ – ν

kBT

)

, (12)

where ν is the Fermi level, ε0
μ the valley energy minimum, and T the electron temperature,

which we shall assume to be the same in each subband and equal to the lattice temper-
ature TL. The condition of zero net current requires that the Fermi level must be con-
stant throughout the sample, and it can be determined by imposing that the total electron
number equals the total donor number in the wire. Then, the linear electron density at
equilibrium is:

ρ
μ(e,q)
l (x) =

NDLyLz
√

m∗
μ

Z (eq) exp

[–ε
μ(eq)
lx – ε0

μ

kBT

]

, (13)

Z (eq) =
∑

μ,l

√
m∗

μ exp

[–ε
μ(eq)
lx – ε0

μ

kBT

]

, (14)

where the subband energies εlx are obtained by solving the SP system (2).
(ii) quasi-equilibrium solution
Now, we consider the quasi-equilibrium regime, where a very small axial electric field

frozen along the channel (E = 1000 V/cm) is applied, and we turn on the gate. The system
is still in local thermal equilibrium, the distribution function is the Maxwellian, but some
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charge flows in the wire. The linear density can be written as

ρ
μ

l =
NDLyLz

√
m∗

μ

Z (eq) exp

[–ε
μ

lx – ε0
μ

kBT

]

, (15)

where the only difference between equations (13) and (15) is in the energy subbands ε
μ

lx,
which now are obtained solving the SP system (2) with VS = 0.012 V, VD = 0 V, and VG

variable. Once the solution has been obtained, the energies ε
μ

lx and wave functions χ
μ

lx for
each subband are fixed and exported into the hydrodynamic model.

(iii) low-field mobility determination
Since the wire is undoped, with a frozen electric field along its x-axis, we can skip the

spatial dependence in the hydrodynamic model, which reduces to a system of Ordinary
Differential Equations. The energies ε

μ

lx and wave functions χ
μ

lx for each subband are im-
ported from the previous steps (and kept fixed), as well as the linear density (15) which is
used as initial condition. The other initial conditions are

V μ

l (0) = 0, W μ

l (0) =
1
2

kBTL, Sμ

l (0) = 0. (16)

The hydrodynamic system has been solved using a standard Runge–Kutta algorithm. The
simulation stops when the stationary regime has been reached obtaining the subband den-
sities and velocities, and finally the low-field mobility (11) has been evaluated.

As a case study, we have fixed Lx = Ly = 8 nm and run the code, changing VG. The nu-
merical experiments indicate that it is sufficient to take into account only the first four
subbands, since the other ones are very scarcely populated. For the solution of step (ii),
the Schrödinger–Poisson block has been solved with a maximum of 25 iterations, with a
CPU time of few minutes. The subband energies ε

μ

lx and wave functions χ
μ

l (y, z) for the �4

valley and the first four subbands are shown in Figs. 2–6 for VG = 0.6 V. We notice from
Fig. 2 that, for μ = 1, the subband energies ε

μ

lx coincide for l = 2 and l = 3 (see dot green and
blue circle curves in Fig. 2), and the corresponding wave functions χ

μ

l (y, z) show a symme-
try (see Figs. 4 and 5). This behaviour is due to the quadratic cross section, in accordance
to the infinitely deep quantum wire case [35].

About step (iii), the stationary regime of the hydrodynamic system has been reached in
some ps, and the CPU effort varies according to the voltage VG with a maximum of one
hour.

Figure 2 Subband energies. Subband energies ε
μ
lx

versus longitudinal dimension x, for VG = 0.6 V
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Figure 3 Subband Wave function. Subband wave
function χ

μ
l (y, z) for μ = 1 (�4 valley), subband l = 1

in the cross section x = 60 nm, for VG = 0.6 V

Figure 4 Subband Wave function. Subband wave
function χ

μ
l (y, z) for μ = 1 (�4 valley), subband l = 2

in the cross section x = 60 nm, for VG = 0.6 V

Figure 5 Subband Wave function. Subband wave
function χ

μ
l (y, z) for μ = 1 (�4 valley), subband l = 3

in the cross section x = 60 nm, for VG = 0.6 V

Figure 6 Subband Wave function. Subband wave
function χ

μ
l (y, z) for μ = 1 (�4 valley), subband l = 4

in the cross section x = 60 nm, for VG = 0.6 V

The electron density (2)4 in the cross section x = 60 nm, perpendicular to the transport
direction, is shown in the Figs. 7, 8, 9 for VG = 0.16, 0.6, 1 V respectively. For small gate
voltage, the volume charge is peaked in the center of the wire as shown in Fig. 7. As the
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Figure 7 Density. Electron density (2)4 in the cross
section perpendicular to the transport direction
(x = 60 nm), for VG = 0.16 V

Figure 8 Density. Electron density (2)4 in a cross
section perpendicular to the transport direction
(x = 60 nm), for VG = 0.6 V

Figure 9 Density. Electron density (2)4 in a cross
section perpendicular to the transport direction
(x = 60 nm), for VG = 1 V

gate voltage increases, the electron density is peaked close to the oxide interface (see Figs. 8
and 9). This phenomenon can be seen also in Fig. 10 where we plot the electron density
(2)4 and total potential Vtot in the cross section y = 0 nm and x = 60 nm, for VG = 0.6 V.
In particular one can observe the effect of the wave function penetration in the oxide and
the formation of a surface inversion layer, similar to a usual MOSFET channel.

In Fig. 11 we show the low-field mobility as function of the effective field, obtained by
including/excluding the SR scattering mechanism. From this figure it is clear how the SR
is the key scattering mechanism as it yields a very strong dependence of the low-field elec-
tron mobility on the effective field. The obtained results are very similar to those obtained
by means of Monte Carlo simulations [21].

Finally in Fig. 12 we show the low-field mobility as function of the wire cross section
(Lx = Ly), for some values of the effective field. We observe that the mobility decreases
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Figure 10 Density and potential. Electron density
(2)4 and total potential Vtot in the cross sections y = 0
nm and x = 60 nm, for VG = 0.6 V

Figure 11 Low-field mobility. Low-field mobility
versus the Effective Field, obtained with/without
Surface Roughness Scattering mechanism, for a 8 ×
8 nm2 SiNW

Figure 12 Low-field mobility. Low-field mobility
versus wire width and thickness (Lx = Ly ), obtained
with Surface Roughness Scattering mechanism, for
some values of the Effective Field

with shrinking of the wire cross section, in qualitative accordance to the results obtained
by MC simulations by Ramayya et al. [21].

The presented results have been obtained using MATLAB running in an AMD Phenom
II X6 1090T 3.2 GHz and 8 Gb RAM.

6 Conclusions
We present a theoretical study of low-field electron mobility in a Gate-All-Around silicon
nanowires, having rectangular cross section, based on a hydrodynamic model coupled
to the Schrödinger–Poisson equations. The hydrodynamic model has been formulated
by taking the moments of the multisubband Boltzmann equation, and by closing the ob-
tained hierarchy of balance equations with the use of the Maximum Entropy Principle.
The most relevant scattering mechanisms, such as scattering of electrons with acoustic
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and non-polar optical phonons and surface roughness, have been included. The results
show a good qualitative agreement with data available from the literature, confirming that
this hydrodynamic model is valid in the quasiequilibrium regime limit. The study of off-
equilibrium transport phenomena as well as of thermoelectric effects for such structures,
using also circular cross-sections of the wire, will be the subjects of future researches.
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