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Abstract

Background: The acoustic damping in gas turbines and aero-engines relies to a great
extent on acoustic liners that consists of a cavity and a perforated face sheet. The
prediction of the impedance of the liners by direct numerical simulation is nowadays
not feasible due to the hundreds to thousands repetitions of tiny holes. We introduce
a procedure to numerically obtain the Rayleigh conductivity for acoustic liners for
viscous gases at rest, and with it define the acoustic impedance of the perforated
sheet.

Results: The proposed method decouples the effects that are dominant on different
scales: (a) viscous and incompressible flow at the scale of one hole, (b) inviscid and
incompressible flow at the scale of the hole pattern, and (c) inviscid and compressible
flow at the scale of the wave-length. With the method of matched asymptotic
expansions we couple the different scales and eventually obtain effective impedance
conditions on the macroscopic scale. For this the effective Rayleigh conductivity
results by numerical solution of an instationary Stokes problem in frequency domain
around one hole with prescribed pressure at infinite distance to the aperture. It
depends on hole shape, frequency, mean density and viscosity divided by the area of
the periodicity cell. This enables us to estimate dissipation losses and transmission
properties, that we compare with acoustic measurements in a duct acoustic test rig
with a circular cross-section by the German Aerospace Center in Berlin.

Conclusions: A precise and reasonable definition of an effective Rayleigh
conductivity at the scale of one hole is proposed and impedance conditions for the
macroscopic pressure or velocity are derived in a systematic procedure. The
comparison with experiments show that the derived impedance conditions give a
good prediction of the dissipation losses.
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1 Introduction
The safe and stable operation of modern low-emission gas turbines and aero-engines cru-
cially depends on the acoustic damping capability of the combustion system components.
Hereby, so called bias flow liners—consisting of a cavity and a perforated face sheet with
additional cooling air flow—play a significant role. Since decades the damping perfor-
mance prediction of these bias flow liners under all possible flow conditions remains a
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major challenge. However, due to the higher tendency of low-emission, lean burn com-
bustion concepts for combustion instabilities the prediction of the acoustic bias flow liner
impedance and therewith its damping performance is a very important prerequisite for the
engine design process. Several analytical and semi-empirical models for the impedance
description of bias flow liners were developed in the past (see also [1]). This work focuses
on the numerical simulation of the acoustic characteristics of bias flow liners applying
multi-scale modeling.

In principal all theoretical approaches are based on the formulation of the Rayleigh con-
ductivity KR [2, 3], which describes the ratio of the fluctuating volume flow Q(t) through
a hole to the driving pressure difference P–(t) – P+(t) across the hole:

KR :=
ρ0∂tQ(t)

P–(t) – P+(t)
, (1)

and has the dimensions of length. One major challenge in the model description of the
Rayleigh conductivity represents the definition or the specification of the pressure differ-
ence since, above and below the perforated liner face-sheet the pressure is not necessarily
constant rather a function of the distance from the hole. Here, the present work applying
a multiscale asymptotic model will provide an exactly defined solution. More precisely,
the Rayleigh conductivity of a single hole in an array of holes is distributed over the whole
liner area. In this way the effective Rayleigh conductivity

kR =
KR

Aδ

(2)

as quotient of the Rayleigh conductivity of one hole and the area Aδ of one periodicity cell
of the array is introduced that has the dimensions of one over length. Using the effective
Rayleigh conductivity the liner impedance can be determined like later shown for example
in Eq. (21).

Indeed, the (effective) Rayleigh conductivity depends on the geometrical parameters,
especially size and shape of the holes and their distances as well as the physical parameters,
noting at first the viscosity and the frequency. Some of these parameters take small values
and we consider them to be scaled with a small parameter δ > 0 in such a way that making
δ smaller the effective Rayleigh conductivity stays essentially constant and tends in the
limit δ → 0 to a non-trivial value.

2 Methods
We consider an acoustic liner that consist of a wall or part of a wall with a periodic dense
array of equisized and equishaped holes with a characteristic periodicity that is propor-
tional to the small parameter δ. The holes may not be of cylindrical shape and even tilted
in general. For sake of simplicity we consider the perforated wall Ωδ

liner with a circular
cross-section of fixed inner radius Rd, while noting that the proposed procedure to define
the Rayleigh conductivity and impedance conditions do not depend on the choice of the
cross-section, but only on the hole pattern and hole shape and can be directly transfered
to other cross-sections like rectangular.

To derive the impedance conditions we let the parameter δ of the hole period tending to
zero—so the number of holes increases accordingly—while the inner and outer diameter
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Figure 1 (a) Simplified geometry of a combustion liner for acoustic studies. (b) Flattened liner. (c) View along
a cross-section

Figure 2 Split of the domain Ω into the two semi-infinite waveguides Ω± and the multi-perforated liner
section Ωc . Impedance transmission conditions on the interface Γliner approximate the behaviour of the
many perforations

of the cross section are scaled like δ2 as well as the thickness of the perforated wall, see
Fig. 1. As δ → 0, the holes merge and the domain Ωδ

liner degenerates to an interface Γliner,
on which we will prescribe the impedance conditions representing the correct dissipation
behaviour of the acoustic liner (see Fig. 2). For the circular liner the limit interface domain
Γliner is a cylinder of radius Rd. As it simplifies the derivation and resulting formula of
the impedance conditions greatly we assume for the area Aδ of the periodicity cell of the
periodic array that Aδ = δ2.

This liner shall be embedded in a duct domain Ω and the computational domain is
Ωδ := Ω \ Ωδ

liner for every δ > 0, i.e., the duct domain without the multi-perforated wall.
On this domain we introduce as viscoacoustic model the linearized compressible Navier-
Stokes equations in frequency domain in a uniform and stagnant media for a source term
f(t, x) = Re(f(x) exp(–ıωt)) with an angular frequency ω > 0:

–ıωvδ +
1
ρ0

∇pδ – ν(δ)	vδ – ν ′(δ)∇ div vδ = f , in Ωδ , (3a)

–ıωpδ + ρ0c2 div vδ = 0, in Ωδ , (3b)

vδ = 0, on ∂Ωδ , (3c)

with the acoustic velocity vδ , the acoustic pressure pδ , the mean density ρ0 > 0, the speed
of sound c, the kinematic and secondary viscosities ν(δ),ν ′(δ) > 0. We scale the viscosities
for δ → 0 like δ4 such that the size of the viscous boundary layers remain asymptotically
the same at the scale of a single hole. If the duct is modelled to be of infinite extend then
additional conditions at infinity have to be posed. Assuming a channel of constant cross-
section and no incoming wave from infinity it suffices that the pressure decays at infinity,
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i.e., limz→±∞ pδ = 0, which is equivalent to pose Dirichlet-to-Neumann boundary condi-
tions at z = ±R

(
pδ

√
ν curl vδ × n

)
(±R) – Λ±(ν)

(
vδ · n

vδ × n

)
(±R) = 0 (3d)

with n = ±(1, 0, 0)� and any R > 0 large enough, where Λ± can be derived in analogy to 2D
wave-guides [4] based on outgoing guided and evanescent modes. Note, that this condi-
tion is stated only for completeness. As it is independent of the presence of the acoustic
liner the derivation will not be detailed. Moreover, for an incoming wave from infinity
we can always use a reformulation with a source term f , and we assume this source to be
located away from the perforated wall such that f = 0 in a neighbourhood.

In the following section we study the solution of the viscoacoustic model in three dif-
ferent geometrical scales beginning at the scale of one hole, pursuing with the scale of
one period of the hole array and concluding with the macroscopic scale, on which the
impedance conditions follow.

2.1 Microscopic scale: the near field around one hole
In the vicinity of one hole that tends to a point xΓ on the interface Γliner we use the local
coordinate X := (r,y, z) = ((r – Rd)/δ2, rθ/δ2, z/δ2). As δ → 0, the hole variable X occupies
the whole unbounded domain Ω̂ defined by (see Fig. 3(a))

Ω̂ =
{

(r,y, z) ∈R
3 such that r < 0 or r > h0

} ∪ Ω̂hole, (4)

Figure 3 (a) Computational domain for the near field problem around a single hole. (b) The near field
pressure (real part) for the liner configuration DC006 (see Table 1) at ω = 2π × 306 s–1 using S = 40.
(c), (d) The near field velocity (imaginary part) for the same configuration as (b) and for ω = 2π × 30 s–1.
Here, the color coding corresponds to the amplitude and the arrows to the direction of the velocity
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where Ω̂hole is the scaled domain representing one hole, and we assume 0 ∈ Ω̂hole. For in-
stance a vertical cylindrical hole of diameter d0δ

2 can be represented by Ω̂hole = {(r,y, z) ∈
R

3 such that 0 ≤ r ≤ h0 and y2 + z2 < 1
4 d2

0}.
Close to one hole of the perforated liner, we represent the solution (vδ , pδ) of (3a)–(3d)

as

vδ = δ–2v–2(xΓ ,X) + O
(
δ–1),

pδ = p0(xΓ ,X) + O(δ),
(5)

where the near field corrector terms (v–2,p0) do not depend on δ.
Now, inserting expansion (5) into the viscoacoustic model (3a)–(3d) and identifying for-

mally terms of same powers of δ results in a product representation of the near-field cor-
rector

(
v–2(xΓ ,X),p0(xΓ ,X)

)
= c(xΓ )

(
ṽ(X), p̃(X)

)
,

where c(xΓ ) allows for a slow variation of near field velocity and pressure along the wall.
The near field profiles (ṽ, p̃) are solution of the instationary Stokes problem

–ıωṽ +
1
ρ0

∇p̃ – ν0	ṽ = 0, in Ω̂ , (6a)

div ṽ = 0, in Ω̂ , (6b)

ṽ = 0, on ∂Ω̂ , (6c)

where ∇ , div and 	 are the gradient, divergence and Laplace operator in X (cf. [5,
Sect. 2.1.6] in time-domain). The near field velocity profile is incompressible on the scale
of one hole and fulfills together with the near field pressure profile the Stokes equations
with a significant viscosity ν0 at the scale of one hole and the additional term –iωṽ that
reflects a time shift between excitation and excited fields. These equations are completed
by Dirichlet jump conditions at infinity

lim
S→∞ p̃|Γ±(S) = ±1

2
, (6d)

that act as a excitation from far away and will be used for the matching with the mesoscopic
scale (see Sect. 2.2). Here,

Γ±(S) =
{

(r,y, z) ∈ Ω̂ ,±r > r± and (r – r±)2 + y
2 + z

2 = S2}, (7)

with r– = 0 and r+ = h0, are the two half-spheres (see Fig. 3(a)) that are moved towards
infinity.

Note that in problem (6b)–(6d) the term –ν ′
0∇ div ṽ that would appear in the first line

cancels out due to the divergence free condition (6b). Moreover, note that the term –ν0	ṽ

can be replaced by ν0 curl curl ṽ and so only the vorticity part of the velocity ṽ will exhibit
a viscosity boundary layer as we will see later.

Problem (6b)–(6d) is a classical saddle-point problem and admits a unique solution
stated by the following proposition.
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Proposition 2.1 There exists a unique solution (ṽ, p̃) ∈ (H1(Ω̂))3 × V(Ω̂) of (6b)–(6d),
where V(Ω̂) = {P ∈ H1

loc(Ω̂) such that ‖∇P‖L2(Ω̂) < ∞}.

Note, that the pressure space V(Ω̂) allows for a constant behavior towards infinity.
With the near field velocity profile ṽ defined by (6b)–(6d) we can define in analogy to

the Rayleigh conductivity a posteriori the quantity

kR := lim
S→∞

ıωρ0

2

(∫
Γ+(S)

ṽ · n –
∫

Γ–(S)
ṽ · n

)
(8)

using the volume flux towards infinity in a symmetric way. Here, n is the outer normal
vector. In this way, the quantity kR is a mapping of a constant near field pressure at infinity
to the flux at infinity. To see the analogy it suffices to consider time harmonic fields vary-
ing like exp(–ıωt), the volume flux Q(t) through the aperture counted positively along the
direction of the er axis to be the same as the volume flux through the surface Γ+(S) (re-
spectively Γ–(S)), counted positively (resp. negatively) along the direction of the normal
vector n, and to compare (1) and (8).

Note, that the normal component of the near field velocity profile v decays like 1/S2

towards infinity and combines different behaviour close to and away from the wall (see
Fig. 3(c) and (d)). This behaviour can be rigorously justified with similar techniques as in
[6, 7].

For the usual definition of the Rayleigh conductivity KR it is not evident where the differ-
ence of the pressure—as it varies locally—and the volume flux—as in the original acous-
tic equations the fluid is compressible—shall be evaluated. The quantity kR is, however,
clearly defined by (6b)–(6d) and (8) as the near field pressure tends to constant values for
|X| → ∞ and as the near field velocity is incompressible. This results from the separation
of the effects at the different length scales, namely viscous incompressible behaviour in
the vicinity of the holes versus inviscid, compressible behaviour away from them, due to
the asymptotic ansatz. As the near field profiles are defined in local coordinates X it has
the dimensions of one over length and we denote it as effective Rayleigh conductivity of
the liner.

The definition of the effective Rayleigh conductivity kR can be used for inviscid fluids as
well, for which ν0 = 0, if the no-slip boundary conditions (6c) are replaced by v · n = 0.

2.2 Mesoscopic scale: the hole pattern
Pursuing with the scale of one period of the hole array and in the vicinity of one hole that
tends to xΓ , we use the local coordinate X := (R, Y , Z) = ((r – Rd)/δ, rθ/δ, z/δ). We consider
for fixed δ > 0 the infinite periodicity cell (see Fig. 4)

Bδ = Bδ
+ ∪Bδ

– ∪ δΩ̂hole, (9)

where Bδ± = {(R, Y , Z) ∈ R
3 such that |Y – bZ| <

√
a

2 , |Z| < 1
2
√

a ,±R > Rδ±} with Rδ
– = 0,

Rδ
+ = h0δ are two semi-infinite parallelepipeds whose opposite lateral faces |Z| = 1

2
√

a and

|Y – bZ| =
√

a
2 are considered to be identified with each other such that Bδ± and so Bδ are

topologically equivalent to a torus. With the cross-section of the periodicity cell

Γ (S) =
{

(R, Y , Z) ∈R
3 such that |Y – bZ| <

√
a

2
, |Z| <

1
2
√

a
, R = S

}
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Figure 4 Representation of the periodicity cell Bδ associated to the intermediate scale

the symmetric difference A�B := (A ∪ B) \ (A ∩ B) the boundary of the periodicity cell is
given as ∂Bδ = (Γ (h0δ) ∪Γ (0))� δ∂Ω̂hole. It consists of the wall boundary and the bound-
ary of the hole. The periodicity cell Bδ degenerates as δ → 0 and tends to the union B0 of
two semi-infinite parallelepipeds B0± connected by the point 0, an infinitely small hole.

Inside the periodic array of holes, we represent the solution (vδ , pδ) of (3a)–(3d) as

vδ = Vδ
0(xΓ , X) + O(δ),

pδ = Pδ
0(xΓ , X) + δPδ

1(xΓ , X) + O
(
δ2) (10)

with X ∈ Bδ .
Inserting expansion (10) in problem (3a)–(3d) and identifying formally the terms of

same powers of δ gives that Pδ
0(xΓ , X) is constant in X and a separation of variables for

the mesoscopic corrector as (Vδ
0(xΓ , X), Pδ

1(xΓ , X)) = c(xΓ )(Vδ(X),Pδ(X)) with the meso-
scopic profile (Vδ ,Pδ) satisfying the Darcy-type problem

⎧⎪⎪⎨
⎪⎪⎩

–ıωVδ + 1
ρ0

∇Pδ = 0, in Bδ ,

divVδ = 0, in Bδ , divVδ = 0, in Bδ ,

Vδ · n = 0, on ∂Bδ .

(11)

Here, ∇ and div are the gradient and divergence in X. The formal identification of terms
of same power in δ can be justified despite the fact that the size of the hole depends on δ

as well. For this an additional scale η for the size of one hole has to be introduced that is
first considered to be independent of δ due to its different meaning and later fixed to δ2.
The expansion (10) is then in δ, where the terms of the expansion depend on η. For the
brevity of the article we have chosen directly η = δ2.

Note that (11) is equivalent to an homogeneous Laplace problem with Neumann bound-
ary conditions for the pressure profile Pδ , where the velocity profile Vδ can be computed
from. Following [8, Proposition 2.2], we can therefore state the following proposition.

Proposition 2.2 For any fixed δ > 0, the kernel of problem (11) is of dimension 2 and
spanned by the functions (Vδ

N ,Pδ
N ) = (0, 1) and (Vδ

D ,Pδ
D) such that Vδ

D tends to a con-
stant as R → ±∞. Moreover, there exists Dδ∞ ∈ C such that we can choose (Vδ

D ,Pδ
D) with
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the limit behaviour:

Vδ
D =

1
ıω

eR + o(1), R → ±∞,

Pδ
D = ρ0R ±Dδ

∞ + o(1), R → ±∞.
(12)

It remains to determine the constant Dδ∞, where we are in particular interested in its
asymptotic behaviour for δ → 0. To obtain this behaviour we will match the mesoscopic
functions Vδ

D and Pδ
D with the near field profiles ṽ and p̃ at half-spheres Γ±(sδ) of radius sδ

for
√

δ < sδ < 2
√

δ centered at the aperture 0. First we note that due to the incompressibility
and the limit behaviour of Vδ

D for its volume flux over the half-spheres it holds

ıω

2

(∫
Γ+(sδ )

Vδ
D · n –

∫
Γ–(sδ )

Vδ
D · n

)
=

ıω

2
lim

S→∞

∫
Γ (S)

Vδ
D · eR +

∫
Γ (–S)

Vδ
D · eR = 1.

Using this equality, definition (8) of the effective Rayleigh conductivity kR, the mesoscopic
to microscopic variable change X = X/δ, and matching of the mesoscopic velocity Vδ

D and
the near field velocity profile ṽ we find that

Vδ
D(X) ∼ ρ0

kRδ2 ṽ

(
X
δ

)
for

√
δ < |X| < 2

√
δ and δ → 0,

and this relation explains a posteriori the expansion (5). By linearity and using defini-
tion of problems (6b)–(6d) and (11), the gradient of the mesoscopic pressure Pδ

D can be
matched with the gradient of the near field pressure profile as well. Integrating these gra-
dients, using limit (6d) and Proposition 2.2 leads to

Pδ
D(X) ∼ ρ0

kRδ
p̃

(
X
δ

)
∼ ± ρ0

2kRδ
for

√
δ < |X| < 2

√
δ,±R > 0 and δ → 0.

As for δ → 0 the mesoscopic pressure Pδ
D tends to ρ0R ± Dδ∞ if δ = o(|X|) we conclude

that

Dδ
∞ =

ρ0

2kRδ
+ o

(
δ–1). (13)

This blow up of the coefficient Dδ∞ as δ → 0 in accordance with its numerical computa-
tions based on an asymptotic analysis of (3a)–(3d) with only two scales [9], where the hole
size is considered not as a scale but as a parameter.

2.3 Macroscopic scale and impedance conditions
Finally, away from a vicinity of the layer, the solution (vδ , pδ) of (3a)–(3d) is represented
by

vδ(x) = v0(x) + o(1),

pδ(x) = p0(x) + o(1).
(14)
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Inserting this expansion in problem (3a)–(3d) and making a formal identification in terms
of powers of δ gives that (v0, p0) is solution of the classical Helmholtz problem

–ıωv0 +
1
ρ0

∇p0 = f , in Ω \ Γliner, (15a)

–ıωp0 + ρ0c2 div v0 = 0, in Ω \ Γliner, (15b)

and a multiscale analysis, for that some theory can also be found in [10] for rigid walls
leads, to the boundary conditions

v0 · n = 0, on ∂Ω . (15c)

In analogy to the 2D case [9] it can be shown that the Dirichlet-to-Neumann condition
(3d) degenerates as well and becomes

p0(±R) – Λ±(0)v0 · n(±R) = 0, (15d)

where the definition of Λ±(0) is based on outgoing guided and evanescent modes (see [11,
Eq. (2.7)]).

This problem is completed by jump conditions across the interface Γliner. To obtain the
conditions we match the macroscopic pressure p0 and flux v0 · n in a matching zone at
distance

√
δ to the interface Γliner to the mesoscopic pressure and velocity functions. For

the pressure we find

p0(x) = CN (xΓ )Pδ
N

(
x – xΓ

δ

)
+ δCD(xΓ )Pδ

D

(
x – xΓ

δ

)

for
√

δ ≤ |x – xΓ | ≤ 2
√

δ and δ → 0, (16)

with two functions CN , CD that allow for slow variation along the perforated wall. With
the factor δ the limit δPδ

D( x–xΓ

δ
) for δ → 0 becomes ± ρ0

2kR
for ±(x – xΓ ) · n > 0, using (13).

Subtracting the two limits of (16) for δ → 0 we obtain

[p0](xΓ ) := lim
δ→0

p0(xΓ +
√

δn) – p0(xΓ –
√

δn) = CD(xΓ )
ρ0

kR
. (17)

Taking the gradient in x on both sides of (16) and using (15a), the assumption that f = 0
close to the perforated wall and (11) we find

v0(x) · n =
ρ0

ıω
∇p0(x) · n = δCD(xΓ )

ρ0

ıω
∇Pδ

D

(
x – xΓ

δ

)
= CD(xΓ )Vδ

D

(
x – xΓ

δ

)

for
√

δ ≤ |x – xΓ | ≤ 2
√

δ and δ → 0. (18)

As the two limits for Vδ
D for R → ±∞ coincide by Proposition 2.2 we obtain

[v0 · n](xΓ ) = 0, on Γliner. (19a)
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Finally, taking the average of (18), using that limR→±∞ Vδ
D = 1

ıω
eR (see Proposition 2.2)

and taking the limit δ → 0 gives in view of (17) the impedance conditions

[p0](xΓ ) =
ıωρ0

kR
〈v0 · n〉(xΓ ), on Γliner. (19b)

Note, that the impedance conditions do not depend on the pattern of the holes, more
precisely on the values a and b (see Fig. 1), but only on their area Aδ , namely through
ν0 = ν/A2

δ in the computation of the effective Rayleigh conductivity kR.

Distinguished limit Note, that the nature of the impedance condition (19b) is due to
the choice of asymptotic scales. It represents a distinguished limit meaning that different
choice would lead to one of the trivial conditions [p0](xΓ ) = 0 (transparent wall) or 〈v0 ·
n〉(xΓ ) = 0 (rigid wall), as it was already stated in [12, Eq. (4.4) and below] for infinitely thin
perforated wall and the Stokes flows. If we would scale the diameter of each hole with ε(δ)
as well as the thickness of the perforated wall such that δ2 = o(ε(δ)) then we would obtain
transparent wall conditions in the limit δ → 0, e.g., if the diameter of each hole scales like δ.
A contrario, the impedance conditions become rigid wall conditions if we would use the
scaling ε(δ) = o(δ2).

Acoustic impedance The nature of the impedance conditions is known in the literature:
the notion of impedance can be found in the works of Webster in the 1910s [13]. More
precisely, he defines the normalized specified acoustic impedance ζ by (note there is a
complex conjugate and a different sign due to the different choice of the time-dependency
convention)

ζ := –
[p0]

cρ0〈v0 · n〉 . (20)

For the derived impedance conditions (19b) and by identification, the normalized speci-
fied acoustic impedance for perforated walls is given by

ζ =
ıω

ckR
=

ıωkR

c|kR|2 . (21)

The resistance Re(ζ ) and the reactance Im(ζ ) are positive quantities when kR has a positive
real part and a negative imaginary part. Moreover in the inviscid case kR is a positive real
number, so that the normalized specified acoustic impedance ζ is purely a reactance.

Formulation in pressure only One can also remark that Problem (15a)–(15d) can be for-
mulated in terms of pressure only: equations (15a)–(15d) give

	p0 +
ω2

c2 p0 = div f , in Ω \ Γliner,

∇p0 · n = 0, on ∂Ω ,

lim
z→±∞±∂zp0 – ıωρ0T1

±p0 = 0,

(22a)
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and impedance conditions (19a)–(19b) are written in terms of the pressure as

[∇p0 · n](xΓ ) = 0 and 〈∇p0 · n〉(xΓ ) = kR[p0](xΓ ). (22b)

This study was done for the inviscid case [14, 15], for which kR is called effective plate com-
pliance. In these papers, the authors derived an equivalent porous condition [15, Eq. (16)]
and effective reflection and transmission coefficients [15, Eq. (5.17–19)], the difference is
due to the choice of the scale for the geometry.

3 Results and discussion
In this section, we are interested by the numerical computation of the effective Rayleigh
conductivity kR, the computation of dissipation losses in acoustic ducts with the imped-
ance conditions and comparison with data from experimental measurements.

3.1 Numerical computation of kR

The effective Rayleigh conductivity kR is defined through the solution of the near field ve-
locity and pressure profiles in the unbounded domain Ω̂ around a single hole. To compute
kR numerically we truncate the unbounded domain, on which we use the finite element
method for discretization and propose an extrapolation procedure to increase the accu-
racy.

First, we define the truncated domain

Ω̂(S) = Ω̂ ∩ (
max

(∣∣X – (0, 0, 0)
∣∣, ∣∣X – (h0, 0, 0)

∣∣) < S
)

(23)

of Ω̂ for a given truncation radius S > 0.5
√

d2
0 + h2

0 (see Fig. 3(a)). It has two artificial
boundaries Γ±(S) that are no boundaries of Ω̂ . We restrict the problem (6b)–(6d) to Ω̂(S)
and ∂Ω̂(S) ∩ ∂Ω̂ , and we approximate the conditions (6d) by setting

p̃|Γ±(S) = ±1
2

.

From the resolution of the truncated problem we compute the approximated Rayleigh
conductivity kR(S) taking as well an approximation of (8), namely

kR(S) :=
ıωρ0

2

(∫
Γ+(S)

ṽ · n –
∫

Γ–(S)
ṽ · n

)
. (24)

Its approximated value kR(S) tends to the Rayleigh conductivity kR as 1/S as illustrated in
Fig. 5. This first-order convergence can be explained with a rigorous analysis of the solu-
tion of problem (6b)–(6d) towards infinity using the Mellin transform [16] and showing
that the solution of this problem on Γ±(S) is a superposition of a radial expansion with
respect to 1/S and of a cartesian expansion with terms decaying exponentially with re-
spect to the distance to the boundary. Similar analyses were performed for the Poisson
and Helmholtz problems in conical domains with a rough periodic boundary [6] or per-
forated wall [7].

As, more precisely, the Rayleigh conductivity kR can be expanded in powers of 1/S we
use an extrapolation in 1/S of first order approximations kR(S) for different truncation
radia S to obtain a second or higher order approximation of the limit value kR.
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Figure 5 Convergence of the real and imaginary parts of the approximated Rayleigh conductivity kR(S) to its
limit value kR = 4.513 – 1.210ı in dependence of the truncation radius S for the liner DC006 at frequency
f = 306 Hz (see Table 1)

Table 1 Liner configurations. The length of the liner is L = 60 mm. The value of the viscosity is
ν(δ) = 1.4660× 10–5 m2/s. For all these configurations b = 0.5

√
a

Config. Number of holes
(longitudinal,
azimuthal)

Longitudinal
inter-hole distance
δ/

√
a (mm)

Azimuthal
inter-hole distance√

aδ (mm)

Hole
diameter
d0δ

2 (mm)

Liner
thickness
h0δ

2 (mm)

σ

%

DC006 (7, 52) 8.5 8.45 1 1 1.1
DC007 (3, 20) 22 21.99 2.5 1 1.0
DC008 (7, 52) 8.5 8.45 2.5 1 6.8
DC009 (3, 20) 22 21.99 1 1 0.2

For the particular case of a straight cylindrical hole that is without loss of generality
centered at y = z = 0, the domain Ω̂(S) is invariant under rotation around the r axis as
well as the solution of the problem (6b)–(6d) for the near field profiles. Hence, the finite
element method in two dimensions can be used for the numerical resolution in a 2D axis-
symmetry setting. To resolve the boundary layer of size

√
ν0/ω on the wall boundary (cf.

[5, Sect. 3.1]) we use the hp-adaptive strategy of Schwab and Suri [17] (see the mesh shown
in Fig. 3(b)).

For four liner configurations, see Table 1, from experimental studies [1, 18] we have
computed the near field velocity and pressure profiles and so the effective Rayleigh con-
ductivity. The relative kinematic viscosity ν0 is computed as quotient of the kinematic vis-
cosity ν = 1.4660 × 10–5 m2/s of air at 15◦C divided by the period δ to the power of four.
In Fig. 3(b) and Fig. 3(c) we illustrate the near field pressure and velocity profiles p̃ and ṽ

for the liner DC006 at frequency 306 Hz using a truncation radius S = 40. It is visible that
the pressure decays almost linearly inside the cylindrical hole, but also the behaviour at
distance to the hole. Moreover, the pressure shows close to the rim of the cylinder an edge
singularity (i.e., a corner singularity for the 2D axis-symmetric problem) that is resolved
numerically by the hp-adaptive refinement strategy. The near velocity profile shows a flux
from all sides to and through the hole. It appears that the outward flux of the imaginary
part of ṽ over Γ+(S) is negative (resp. positive over Γ–(S)) corresponding to a positive real
part of the approximate Rayleigh conductivity kR(S) (see (24)) and so of the Rayleigh con-
ductivity kR. This is in line with the inviscid case, where kR is real and positive. Moreover,
we see the higher velocity amplitude inside the hole that decays towards its boundaries.
This boundary layer phenomena is more visible for lower frequencies (see Fig. 3(d)), where
one also see a local change of the velocity direction on the wall boundary.
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Figure 6 Real and imaginary parts of kR in dependence of the frequency f = ω
2π

Figure 7 Comparison of the impedance with the normalized specific resistance (left) and the normalized
specific reactance (right) computed by our model and Melling model as function of the frequency f = ω

2π for
the liner configuration DC006. As Melling model uses an effective viscosity taking into account thermal
conductivity losses we show the impedance for our model with the effective viscosity as well

In Fig. 6, we plot the effective Rayleigh conductivity kR as a function of the frequency
f := ω

2π
for different liner configurations given in Table 1. As expected, following the re-

mark on the normalized specified acoustic impedance ζ , the real part of kR is positive and
its imaginary part is negative. One can also remark that for liner configurations DC006
and DC007, that have a close value of the porosity σ but quite different hole repartition
and hole diameter, their Rayleigh conductivities differ significantly in both their real and
imaginary part.

In Fig. 7, we show the computed normalized specific acoustic impedance ζ for the
liner configuration DC006 in comparison with the Melling model (see [19] and [18, Eq.
(12)]), that is given an analytic formula. For the latter an effective kinematic viscosity
ν̃(δ) := 2.179ν(δ) is used that shall incorporate also thermal conductivity losses near a
highly conducting wall, see [20, p. 239] and [1, p. 62]. We plotted the Rayleigh conduc-
tivities obtained from our model with this effective kinematic viscosity. The reactance
predicted by the two models are very close, where the resistence differs by up to 20%. The
importance of taking the thermal conductivity losses into account will be seen in compar-
ison with the measurements and be discussed later in Sect. 3.3.

3.2 Dissipation losses in acoustic ducts
3.2.1 Experimental setup and analysis
The experimental study is performed in the duct acoustic test rig with a circular cross-
section (DUCT-C) at the German Aerospace Center in Berlin at ambient conditions. The
setup of the test rig is illustrated in Fig. 8. It allows high precision acoustic measurements
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Figure 8 Schematic setup of the Duct Acoustic Testrig (DUCT-C) with speakers A and B, and microphones
1–12. The anechoic terminations at both ends are not shown

of the damping performance of various liner configurations, including grazing and bias
flow.

The test duct consists of two symmetric measurement sections (section 1 and section 2
in Fig. 8) of 1200 mm length each. They have a circular cross-section with a radius Rd of
70 mm. In order to minimize the reflection of sound at the end of the duct back into the
measuring section the test duct is equipped with anechoic terminations at both ends (not
shown in Fig. 8). Their specifications follow the ISO 5136 standard. The damping module
is a chamber of 60 mm. It has a circular cross-section with a radius of 120 mm.

A total of 12 microphones are mounted flush with the wall of the test duct. They are in-
stalled at different axial positions upstream and downstream of the damping module and
are distributed exponentially with a higher density towards the damping module. Two mi-
crophones are installed opposite of each other at the same axial position close to the signal
source. As evanescent modes become more prominent in the vicinity of the source, their
influence is reduced significantly by using the average value of these two microphones for
the analysis. This technique helps to reduce the errors for frequencies approaching the
cut-on frequency of the first higher order mode and thus, extends the frequency range for
accurate results.

At the end of each section a loudspeaker is mounted at the circumference of the duct
(A and B in Fig. 8). They deliver the test signal for the damping measurements. The sig-
nal used here is a multi-tone sine signal. All tonal components of the signal are in the
plane wave range. The signal has been calibrated in a way that the amplitude of each tonal
component inside the duct is about 102 dB.

The microphones used in these measurements are 1/4′′ G.R.A.S. type 40BP condenser
microphones. Their signals are recorded with a 16 track OROS OR36 data acquisition
system with a sampling frequency of 8192 Hz. The source signals for the loudspeakers
are recorded on the remaining tracks. The test signal is produced by an Agilent 33220A
function generator. The signals are fed through a Dynacord L300 amplifier before they
power the Monacor KU-516 speakers.

For each configuration two different sound fields are excited consecutively in two sep-
arate measurements (index a and b). Speaker A is used in the first measurement and in
the second measurement the same signal is fed into speaker B. Then, the data of section
1 and section 2 (index 1 and 2) are analyzed separately. This results in four equations for
the complex sound pressure amplitudes for each section and measurement for j = a, b:

p̂1j(z) = p̂+
1je

ıωz/c + p̂–
1je

–ıωz/c, (25a)

p̂2j(z) = p̂+
2je

ıω(z–L)/c + p̂–
2je

–ıω(z–L)/c, (25b)
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p̂+ and p̂– are the complex amplitudes of the downstream and upstream traveling
waves.

The recorded microphone signals are transformed into the frequency domain using the
method presented by Chung [21]. This method rejects uncorrelated noise, e.g., turbulent
flow noise, from the coherent sound pressure signals. Therefore, the sound pressure spec-
trum of one microphone is determined by calculating the cross-spectral densities between
three signals, where one signal serves as a phase reference. In our case the phase refer-
ence signal is the source signal of the active loudspeaker. As a result we obtain a phase-
correlated complex sound pressure spectrum for each microphone signal.

According to Eqs. (25a)–(25b) the measured acoustic signal is a superposition of two
plane waves traveling in opposite direction. In order to determine the downstream and
upstream propagating portions of the wave in each section, a mathematical model is fit-
ted to the acoustic microphone data. This model considers viscous and thermal conduc-
tivity losses at the duct wall. They are included in the wave number with the following
attenuation factor α as proposed by Kirchhoff [22]:

α =
1

cRd

√
νω

2

(
1 +

γ – 1√
Pr

)
(26)

with the duct radius r, the speed of sound c, the kinematic viscosity ν , the angular fre-
quency ω (as in Eqs. (3a)–(3d)), the heat capacity ratio γ , and the Prandtl number Pr. As
a result of this least-mean-square fit, the four complex sound pressure amplitudes p̂+

1 , p̂–
1 ,

p̂+
2 and p̂–

2 are identified at position z = 0 for both measurements. These sound pressure
amplitudes are related to each other via the reflection and transmission coefficients of the
test object. This is illustrated in Fig. 9 for the two different measurements A and B. In
order to calculate the reflection and transmission coefficients r+, r–, t+, and t– from the
sound pressure amplitudes the following four relations can be derived for j = a, b:

p̂–
1j = r+p̂+

1j + t–p̂–
2j, (27a)

p̂+
2j = r–p̂–

2j + t+p̂+
1j. (27b)

Figure 9 Illustration of the sound filed in the duct for
measurements A and B by means of the sound pressure
amplitudes p̂, the reflection coefficient r, the transmission
coefficient t, and the end reflection re
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The equations from both measurements are combined and solved for the reflection

r+ =
p̂–

1ap̂–
2b – p̂–

1bp̂–
2a

p̂+
1ap̂–

2b – p̂+
1bp̂–

2a
, r– =

p̂+
2bp̂+

1a – p̂+
2ap̂+

1b
p̂+

1ap̂–
2b – p̂+

1bp̂–
2a

(28)

and transmission coefficients

t+ =
p̂+

2ap̂–
2b – p̂+

2bp̂–
2a

p̂+
1ap̂–

2b – p̂+
1bp̂–

2a
, t– =

p̂+
1ap̂–

1b – p̂+
1bp̂–

1a

p̂+
1ap̂–

2b – p̂+
1bp̂–

2a
(29)

in downstream and upstream direction, respectively. The advantage of combining the two
measurements is that the resulting coefficients are independent from the reflection of
sound at the duct terminations. These end-reflections are contained in the sound pres-
sure amplitudes, but do not need to be calculated explicitly. Moreover in the case of a
uniform and stagnant flow these coefficients do not depend on the direction we consider,
i.e., r– = r+ and t– = t+.

The dissipation of acoustic energy is expressed by the dissipation coefficient. The dis-
sipation coefficient � can be calculated directly from the reflection coefficient R and the
transmission coefficient T via an energy balance

R± + T± + �± = 1. (30)

To compute these coefficients, the integration of the acoustic energy flux in a uniform
and stagnant flow yields a relation between the acoustic pressure p and acoustic power P
quantities(see Blokhintsev [23] and Morfey [24]):

P± =
πR2

d
2ρ0c

∣∣p̂±∣∣2. (31)

Then, the energy coefficients can be given relative to the pressure coefficients as:

R+ =
P–

1
P+

1
=

∣∣r+∣∣2, (32a)

R– =
P+

2
P–

2
=

∣∣r–∣∣2, (32b)

T+ =
P+

2
P+

1
=

∣∣t+∣∣2, (32c)

T– =
P–

1
P–

2
=

∣∣t–∣∣2, (32d)

where the indices 1 and 2 refer to section 1 and section 2 of the duct as illustrated in Fig. 9.
With the energy balance (30) follows the definition of the energy dissipation coefficient

� = 1 –
(∣∣r±∣∣2 +

∣∣t±∣∣2). (33)

This is an integral value of the acoustic energy that is absorbed while a sound wave is
passing the damping module. The dissipation coefficient is used to evaluate the damping
performance of the test object.
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3.2.2 Numerical simulation of dissipation losses
This setup is also simulated numerically using the equivalent problem (22a)–(22b) for the
pressure with a source term corresponding to an incoming field pinc(r, θ , z) = exp(ıωz/c)
from the left. The scattered field is computed numerically using the mode matching proce-
dure with N = 5 modes [25]: we seek for the scattered field p0 under the form (see Fig. 2(b))

p0(r, θ , z) = pinc(r, θ , z) +
N–1∑
j=0

α–
j ψj(r) exp(–ı βj z), z < 0, (34a)

p0(r, θ , z) =
N–1∑
j=0

α+
j ψj(r) exp(ı βj z), z > L, (34b)

inside the waveguide part, and under the form

p0(r, θ , z) =
2N–1∑

j=0

ψ ′
j (r)

(
α′

j
+ exp

(
ı β ′

j z
)

+ α′
j
– exp

(
ı β ′

j (L – z)
))

, 0 < z < L, (34c)

inside the duct part. The pairs (βj,ψj) and (β ′
j ,ψ ′

j ) are solution of a “2D” transverse eigen-
value problem in the wave-guide and liner parts, using the fact that the source term pinc

and the geometry are independent of the angle θ . From the mode matching and assuming
that there is only one propagative mode inside the waveguide, i.e., βj ∈ ıR for j �= 0, the
energy dissipation coefficient is computed as

� := 1 –
(∣∣α+

0
∣∣2 +

∣∣α–
0
∣∣2), (35)

and corresponds to the energy dissipation coefficient D± (Eq. (33)) if both grazing and bias
flows are absent.

3.3 Numerical results and comparison with experimental data
Figure 10 shows the average dissipation of the different liner configurations (see Table 1)
in the DUCT-C setup (see Fig. 9) as a function of the frequency. The average dissipa-
tion represents a mean value of the dissipation results for the upstream and downstream
acoustic incidence (see Sect. 3.2.1). In a symmetric setup and without grazing flow this is,
of course, equal to the dissipation from either side of excitation. The graphs compare the
experimental values (symbols), the former theoretical model from Melling [19] (dashed
lines) and the here introduced asymptotic model (solid lines). In result, the asymptotic
model indicates a better comparison to the experimental values especially for the con-
figurations DC006 (Fig. 10(a)) and DC008 (Fig. 10(c)) where the Melling model slightly
underestimates the dissipation in the frequency range above approximately 400 Hz. For
the configuration DC007 (Fig. 10(b)) with a porosity of 1.0% and a hole diameter of 2.5 mm
both models (Melling and asymptotic) underestimate the maximum dissipation of approx-
imately 0.4 around 400 Hz revealed in the experimental studies.

4 Conclusions
It has been shown that impedance conditions with one numerically computed parameter—
the effective Rayleigh conductivity—can predict well the dissipation losses of acoustic
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Figure 10 Average dissipation from experiments and numerical modelling plotted over the frequency
comparing models for DC006, DC007, DC008, DC009

liners. The effective Rayleigh conductivity can be obtained by solving numerically an in-
stationary Stokes problem in frequency domain of one hole with a scaled viscosity in an
characteristic infinite domain with prescribed pressure at infinity. For the computation
the infinite domain is truncated, where we propose approximative boundary conditions
on the artificial boundaries and an extrapolation procedure to save computation time. We
decoupled in a systematic way the effects at different scales and derived impedance con-
ditions for the macroscopic pressure or velocity based on a proper matching of pressure
and velocity at the different scales. In difference to a direct numerical solution for acoustic
liners the overall computation effort is separated into a precomputation of the effective
Rayleigh conductivity impedance conditions, where no holes have to be resolved anymore
by a finite element mesh. The comparison with measurements in the duct acoustic test
rig with a circular cross-section at the German Aerospace Center in Berlin show that the
dissipation losses based on the impedance conditions with effective Rayleigh conductiv-
ity are well predicted. The derivation of the impedance conditions do not depend on the
cylindrical shape of the liner and can be used for others shapes like rectangular profiles.
The procedure for the computation of the effective Rayleigh conductivity can not only be
extented to include thermic effects that are currently only heuristically incorporated, but
also nonlinear effects inside the hole that lead to an interaction of frequencies.
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