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Abstract
We formulate a stochastic impulse control model for animal population management
and a candidate of exact solutions to a Hamilton–Jacobi–Bellman quasi-variational
inequality. This model has a qualitatively different functional form of the performance
index from the existing monotone ones. So far, optimality and unique solvability of
the Hamilton–Jacobi–Bellman quasi-variational inequality has not been investigated,
which are thus addressed in this paper. We present a candidate of exact solutions to
the Hamilton–Jacobi–Bellman quasi-variational inequality and prove its optimality
and unique solvability within a certain class of solutions in a viscosity sense. We also
present and examine a dynamical system-based numerical method for computing
coefficients in the exact solutions.
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1 Introduction
This paper focuses on mathematical analysis of an exact viscosity solution to Hamilton–
Jacobi–Bellman quasi-variational inequality arising in an animal population management
problem. Our problem, despite it is relatively simple, is important from mathematical,
environmental and ecological engineering standpoints since many management problems
can be described and/or analyzed with mathematical tools focused on in our paper. Our
results are mathematical ones but providing a background of the problem is important for
understanding it. Hence, we firstly describe the problem background in this section.

Management of animal population, such as fishery resources and their predators, is an
important ecological problem. Such examples include aquaculture of Plecoglossus altivelis
(P. altivelis, Ayu) in Japan [1], extermination of its predator bird Phalacrocorax carbo
(P. carbo, Great cormorant) [2, 3], agricultural crops damage by a wild boar Sus scrofa
in Europe [4], and feeding damage from many insects to soybean seeds [5]. Recently, fish-
eating bird P. carbo population has been increasing worldwide, such as in Japan [6], Europe
[7], North America [8], and Greenland [9]. The increase of the population causes several
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problems. In Japan, feeding damage from fish-eating birds, such as P. carbo, to inland fish-
ery resources, has been increasing and is currently one of the most severe problems to be
solved [6]. Cost-effective and ecologically-sound bird population management policy is
required for effective reduction of the feeding damage.

Stochastic optimal control theory [10] has been applied to population and resource man-
agement problems [1, 11–14]. In reality, there are fixed costs besides proportional costs
when some interventions are performed for management of animal population. Stochastic
impulse control theory serves as an effective mathematical tool for dealing with this issue
[14–17] and has been applied to many problems, such as finance and economics [18–20],
and animal population management by the authors [21].

Finding an optimal control policy in the context of stochastic impulse control reduces
to solving a Hamilton–Jacobi–Bellman quasi-variational inequality (HJBQVI), a degener-
ate elliptic or parabolic differential inequality. Many researchers have investigated math-
ematical properties of HJBQVIs. In Cadenillas [17], the performance index is quadratic
monomial (convex). He proposed a candidate of the exact solution to the HJBQVI and
proved a verification theorem and that the exact solution satisfies the HJBQVI. Existence
and uniqueness of exact solutions has not been proved. In Ohnishi and Tsujimura [15] and
Øksendal [21], the performance index is quadratic monomial (convex). They proposed a
candidate of the exact solution to the HJBQVI and proved a verification theorem, exis-
tence and uniqueness of the exact solution, and that it satisfies the HJBQVI. Note that
in Ohnishi and Tsujimura [15], the cost function is quadratic unlike those of Cadenillas
[17], Øksendal [21], and this paper. In addition, viscosity solutions are appropriate weak
solutions for degenerate elliptic and parabolic equations [22–24], and are appropriate so-
lutions to HJBQVIs.

Recently, Yaegashi et al. [3] proposed an optimal control model for cost-effective and
sustainable management of P. carbo and a candidate of its exact viscosity solution to
a HJBQVI. This model has a different performance index from those in the above-
mentioned literature. However, existence and uniqueness of the solution, and its optimal-
ity namely the verification, have not been discussed so far. If we could give an answer on
the above-mentioned problems about the exact solution, the solution and the associated
optimal policy can establish a firm position as a reasonable mathematical tool. This is the
motivation of this paper.

The objectives of this paper are thus to formulate the stochastic impulse control model
of an animal population management, to present a candidate of the exact solutions to a
HJBQVI, and to prove its optimality and unique solvability within a certain class of so-
lutions from a viscosity viewpoint. The novelty of this paper against the previous studies
from Cadenillas [17], Ohnishi and Tsujimura [15], and Øksendal [21] is the point that our
performance index is based on a concave polynomial as a sum of two monomials. Our per-
formance index is therefore not based on monotone functions as in the above-mentioned
models. We also propose and examine a numerical method to compute the coefficients of
the exact solution.

The rest of this paper consists of 4 Sections and 3 Appendices. Section 2 introduces our
model. Section 3 provides the exact solution. Section 4 concerns mathematical analysis
of the exact solution. Section 5 presents and examines the numerical method. Section 6
concludes this paper. Appendix A contains the proofs of lemmas in Sects. 2 and 4. Ap-
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pendix B contains the proofs of Theorems 4.2 and 4.3. Finally, Appendix C presents the
proof of Theorem 5.1.

2 Mathematical model: our method
Our aim is mathematical and numerical analysis on a recent population management
problem with an emphasis of viscosity solutions. This section presents our mathemati-
cal approach and derives basic properties of the present mathematical model.

2.1 Population dynamics
An infinite-horizon management problem of an animal population in a habitat is consid-
ered [21]. We assume that the decision-maker, the manager of the animal population, can
reduce the animal population through intervention, and also assume that they are car-
ried out in a much shorter timescale than that of the animal population dynamics, so that
the impulsive control formalism is justified. The population in the habitat at the time t
is denoted as Xt , which is governed by a stochastic differential equation (SDE) with the
fluctuation term defined in the Itô’s sense:

⎧
⎨

⎩

dXt = Xt(μdt + σ dBt), τi ≤ t < τi+1

Xτ = Xτi– – ζi,
with an initial condition X0– > 0, (1)

where μ > 0 is the intrinsic growth rate, σ > 0 is the magnitude of stochastic fluctuation
involved in the population dynamics, Bt is the 1-D standard Brownian motion defined
on a usual complete probability space [25], τi (i = 0, 1, 2, . . . , τ0 = 0) is the time when the
intervention is performed to reduce the population and ζi > 0 represents the magnitude
of the intervention, the total population of the killed animal, at the time τi. Whenever the
intervention is performed, we assume the cost

K(ζi) = k1ζi + k0 (ζi > 0) (2)

where k1 > 0 is the cost proportional to ζi and k0 > 0 is the fixed cost incurred regardless
of ζi. In this model, both the timing τi and the magnitude of the intervention ζi are the
control variables to be optimized.

2.2 Performance index
The performance index J is the expected net profit of the decision-maker subject to a
discount:

J(x;η) = E

[∫ ∞

0
e–δs(RXM

s – rXm
s

)
ds –

∞∑

i=0

e–δτi K(ζi)

]

(3)

with

0 < M < 1 < m < 2, (4)

where δ > 0 is the discount rate, and R, r, M and m are the positive constants. In the right-
hand side of (3), the term RXM

s represents the ecological utility provided by the existence
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of the animal, the term –rXm
s represents the disutility by the existence of the animal, and

the last summation term is the cost of the intervention. The net profit RXM
s – rXm

s is not
monotone but concave with respect to Xs. The relationship (4) means that the increase
rate of the disutility by the existence of the animal is higher than that of the utility by the
existence of the animal, and the condition 0 < M < 1 in (4) intrinsically means that the
ecological services drastically change between the states where the population exists and
where the population does not exist. This consideration is represented by the divergence
of the derivative of RXM

s with respect to Xs at the origin Xs = 0.
Here, η represents the management policy defined by the timing and magnitude of the

intervention

η = (τi, ζi)i≥0 (5)

and is called an admissible control if it satisfies the conditions stated in Definition 2.1 in
Onishi and Tsujimura [15], which are listed up in what follows:

0 ≤ τi < τi+1, a.s. i ≥ 0, (6)

τi is an {Ft}t≥0 stopping time, i ≥ 0, (7)

ζi is Fτi measurable, i ≥ 0, (8)

P
[

lim
i→∞ τi ≤ T

]
= 0, ∀T ∈ [0,∞), (9)

and

Xt ≥ 0, t ≥ 0. (10)

2.3 Hamilton–Jacobi–Bellman quasi-variational inequality
Let A be the set of the admissible controls. The objective of the decision-maker is to find
the optimal control η∗ such that

V (x) = sup
η∈A

J(x;η) = J
(
x;η∗), (11)

where V = V (x) is the maximized performance index referred to as the value function.
The dynamic programming principle [10] leads to a HJBQVI [14–17], which is hereafter
simply referred to as the HJBQVI, as

min
{

–LV – RxM + rxm, V – MV
}

= 0, x > 0 (12)

with the differential operator L and the intervention operator M defined as

LW =
1
2
σ 2x2 d2W

dx2 + μx
dW
dx

– δW (13)

and

MW = sup
ζ>0

[
–K(ζ ) + W (x – ζ )

]
, (14)
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respectively, for generic sufficiently smooth W = W (x). The boundary condition for the
HJBQVI is V (0) = 0, which means that no problem arises when there is no population.
The left part in “min” operator in the HJBQVI (12) corresponds to the situation where no
intervention should be performed, while the right part corresponds to the situation where
the intervention should be performed immediately. The following lemma gives the upper
and lower bound of V . The lemma shows that the value function is locally bounded.

Lemma 2.1

A1xM + A2xm ≤ V (x) ≤ A1xM, x ≥ 0. (15)

Proofs of all lemmas and theorems in the paper are in Appendices for the sake of brevity
of the main body. In what follows, solutions to the HJBQVI complying with the condition
(15) are explored.

2.4 Optimal control
Under the QVI controls (Definition 3.2 in Cadenillas [17])

(τ0, ζ0) = (0, 0), (16)

τi = inf
{

t > τi–1 : V (Xt) = MV (Xt)
}

, i ≥ 0, (17)

and

ζi = arg sup
ω>0

{
–K(ω) + V (Xτi – ω) : ω ∈R, Xτi – ω ∈ (0,∞)

}
, i ≥ 0, (18)

the following threshold-type management policy with the threshold values x̄ and x (x̄ > x)
is found to be optimal (Verification theorem, Theorem 3.1 in Cadenillas [17]):

(A) If Xt– < x̄, then no intervention is performed. If Xt– = x̄, the intervention is
immediately performed and Xt– is reduced to x (Xt = x).

(B) If X0– > x̄, then X0– is immediately reduced to x (X0 = x) by the intervention, and
follows (A).

With the thresholds x̄ and x, the optimal amount of the intervention ζ ∗ is

ζ ∗ =

⎧
⎨

⎩

x – x (x ≥ x̄)

0 (x < x̄)
(19)

A sample path of the process Xt following the above-mentioned policy is plotted in Fig. 1.
Note that Cadenillas [17] proved the verification theorem (Theorem 3.1 in the literature),
which states that the solution to HJBQVI (12) under the QVI control (16) through (18) is
in fact the value function (11) and the QVI control is the optimal impulse control. Thus, if
we could solve the HJBQVI (12), then we are able to obtain the optimal impulse control.

3 Results and discussion on an exact solution
In this section, we present a candidate of the solution to the HJBQVI (12), which later turns
out to be a viscosity solution. We assume the following conditions to derive a non-trivial
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Figure 1 The process Xt under the optimal management policy is blue line. The thresholds are x̄ = 2 (red line)
and x = 1 (pink line). The optimal magnitude of the killed animal ζi is shown as green line

exact viscosity solution [10]:

μ > σ 2/2, (20)

δ – μm – 0.5σ 2m(m – 1) > 0, (21)

and

β =
1
2

(

1 –
2μ

σ 2 +

√
(

2μ

σ 2 – 1
)2

+
8δ

σ 2

)

(> 2). (22)

The inequality (20) means that the animal population does not become extinct without
interventions. The relationship (21) and (22) means that the decision-maker manages the
animal population from the sufficiently long-term perspectives.

Here, a formal exact solution to the HJBQVI (12) is presented, which is inspired from
the impulse control models in the literature [15, 17, 21]. Let V̄ be a candidate of the so-
lution to the HJBQVI (12). At first, we consider the situation with x < x̄, under which no
intervention should be performed. In the HJBQVI (12), the equality [26]

LV̄ + RxM – rxm = 0 (23)

has a solution

V̄ (x) = a1xβ+ + a2xβ– + A1xM + A2xm, (24)

where

β± =
1
2

(

1 –
2μ

σ 2 ±
√

(
2μ

σ 2 – 1
)2

+
8δ

σ 2

)

, (25)

A1 = R
[

δ – μM –
σ 2

2
M(M – 1)

]–1

> 0, (26)
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and

A2 = –r
[

δ – μm –
σ 2

2
m(m – 1)

]–1

< 0. (27)

In (24), a1xβ+ + a2xβ– is the general solution to LV̄ = 0 and A1xM + A2xm is a particular
solution to (23). Assume a2 	= 0, then we have limx→+0 a2xβ– = ±∞ since β– < 0. However,
this contradicts the boundary condition V̄ (0) = 0. Hence, a2 = 0 holds. At last, the solution
(24) becomes

V̄ (x) = axβ + A1xM + A2xm, (28)

where the notations a1 = a and β+ = β are used.
For x ≥ x̄ where the intervention should be performed immediately, by the HJBQVI (12),

the condition

V̄ (x) = –k1(x – x) – k0 + V̄ (x)

= –k1(x – x) – k0 + axβ + A1xM + A2xm (29)

has to be satisfied. Consequently, a candidate of solutions to HJBQVI (12) is found as

V̄ (x) =

⎧
⎨

⎩

axβ + A1xM + A2xm (x < x̄),

–k1(x – x) – k0 + axβ + A1xM + A2xm (x ≥ x̄),
(30)

where a, x̄ and x are unknown at this stage.
Assume the following condition in the solution V̄ (x) to determine its unknown coeffi-

cients [15, 16]:
(a) Continuity of V̄ (x) at x = x̄ (Value matching),
(b) Continuity of V̄ ′(x) at x = x̄ (Smooth pasting),
(c) Optimality of the thresholds x̄ and x in (14).

Firstly, by (a), we have

V̄ (x̄) = –k1(x̄ – x) – k0 + V̄ (x). (31)

By (b), we have

V̄ ′(x̄) = lim
x↓x̄

d
dx

{
–k1(x – x) – k0 + V̄ (x)

}

= –k1 . (32)

Finally, by (c)

V̄ (x̄) = sup
y>0

{
–k1(x̄ – y) – k0 + V̄ (y)

}
, (33)

namely, we have

d
dy

[
–k1(x̄ – y) – k0 + V̄ (y)

]|y=x = 0 (34)
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holds. Substituting (28) into (31), (32), and (34), the following system of nonlinear equa-
tions governing the coefficients is derived:

⎧
⎪⎪⎨

⎪⎪⎩

ax̄β + A1x̄M + A2x̄m = –k1(x̄ – x) – k0 + axβ + A1xM + A2xm,

aβx̄β–1 + A1Mx̄M–1 + A2mx̄m–1 = –k1,

aβxβ–1 + A1MxM–1 + A2mxm–1 = –k1,

(35)

where a, x̄ and x are unknown. According to the conditions (a) and (b), the solution (30)
is V̄ (x) ∈ C1(0,∞) and is twice differentiable except at x = x̄; namely, we have V̄ (x) ∈
C2((0, x̄) ∪ (x̄,∞)). Thus, the solution V̄ (x) is not a classical solution but a solution a.e.

For a, we have the following lemma, which immediately follows from the functional form
of the exact solution (30) and Lemma 2.1. The following lemma is useful for determining
the sign of the unknown coefficient involved in V̄ .

Lemma 3.1 For a in (30), we have a ≥ 0.

4 Discussion on the system of nonlinear equations
4.1 Existence and uniqueness
In this subsection, we prove unique solvability of the system of nonlinear Eqs. (35) based
on an analytical approach, which is inspired from the arguments in the literatures [15, 21].
Because our performance index contains a sum of two monomials of X, which is differ-
ent from those in the literature, their procedure cannot be directly applied to our prob-
lem. The main objective of this section is to prove the following theorem that guarantees
unique existence of the triplet of the unknown coefficients, with which we can completely
determine V̄ .

Theorem 4.1 There exists a unique triplet (a, x̄, x) to the system of nonlinear equations
(35).

Theorem 4.1 is proved in a step by step approach using a series of lemmas. Lemma 4.1
sharpens the result of Lemma 3.1.

Lemma 4.1 For a in (30), we have a 	= 0.

According to Lemmas 3.1 and 4.1, we can assume a > 0. With a fixed a, define the func-
tion g as

g(x) = aβxβ–1 + A1MxM–1 + A2mxm–1 + k1 (36)

whose first derivative is

g ′(x) = aβ(β – 1)xβ–2 + A1M(M – 1)xM–2 + A2m(m – 1)xm–2. (37)

Lemma 4.2 presents a technical result on qualitative shape of g ′.

Lemma 4.2 g ′(x) = 0 has a unique zero x = x̂ such that 0 < x̂ < ∞.
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Table 1 Profile of g(x)

x 0 x̂ ∞
g′(x) –∞ 0 ∞
g(x) ∞ g(x̂) = aβ m–β

m–1 x̂
β–1 + A1Mm–M

m–1 x̂
M–1 + k1 ∞

Hereafter, we denote the unique x̂ in Lemma 4.2 as x̂ = x̂(a) to indicate its dependence on
a. We show dependence of x̂(a) on a in the next lemma. The lemma indicates a monotone
property of x̂(a).

Lemma 4.3

dx̂
da

< 0 for a > 0. (38)

Next, we consider the profile of g(x). The following lemma demonstrates that g is unimodal.

Lemma 4.4 g(x) monotonically decreases for 0 < x < x̂, takes its extremum at x̂, and mono-
tonically increases for x̂ < x < ∞. In addition, limx→0 g ′(x) = –∞ and limx→∞ g ′(x) = ∞. See
also Table 1.

The proof is omitted since it is by a direct calculation. In fact, by g ′(x̂) = 0, we have

g(x̂) = aβ
m – β

m – 1
x̂β–1 + A1M

m – M
m – 1

x̂M–1 + k1. (39)

Thus, for a such that

g(x̂) = aβ
m – β

m – 1
x̂β–1 + A1M

m – M
m – 1

x̂M–1 + k1 < 0, (40)

there are two solutions to g(x) = 0, x = x(a) and x = x̄(a). Note that x, x̂, and x̄ have to satisfy

0 < x(a) < x̂(a) < x̄(a) < ∞. (41)

It will turn out later that the inequality (40) is satisfied under without any additional con-
ditions. Thus, hereafter, we assume (40).

In the next lemma, we show dependence of x(a) and x̄(a) on a. They are monotone with
respect to a.

Lemma 4.5

dx
da

> 0 and
dx̄
da

< 0 for a > 0. (42)

Next, we consider the upper bound of a with which the above-mentioned x and x̄ exist. Such
an upper bound is denoted as â.

The next lemma shows that this upper bound in fact exists.

Lemma 4.6 There exists an upper bound of a with which x and x̄ exist.
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Hereafter, we represent the range of a as 0 < a < â(k1) to indicate its dependence on k1.
Now, we prove that the pended inequality (40) is satisfied without any additional condi-
tions.

Lemma 4.7 The inequality (40) is satisfied without any additional conditions to k1. Thus,
there exist unique x̄ and x which solve the system of nonlinear equations (35).

Now, we can prove uniqueness and existence of a.

Lemma 4.8 There exists a unique coefficient a solving the system of nonlinear equations
(35) at least if k0 is sufficiently small.

We prove that the uniqueness and existence hold true also for not small k0.

Lemma 4.9 There exists a unique a∗ such that F(a∗) = 0 and 0 < a∗ < â solving (35). Here,
F(a) is the left hand side of (98).

Finally, from Lemmas 4.7 and 4.9, Theorem 4.1 immediately follows.

4.2 Optimality of the exact solution
Uniqueness of the exact solutions of the form (30) was proved in the previous sub-section.
In this subsection, we show that the candidate of the solutions satisfies the HJBQVI (12).
Let axβ + A1xM + A2xm be V̄l(x) and –k1(x – x) – k0 + axβ + A1xM + A2xm be V̄r(x). By

V̄l(x̄) = V̄l(x) – k1(x̄ – x) – k0, (43)

the exact solution (30) is rewritten as

V̄ (x) =

⎧
⎨

⎩

V̄l(x) (x < x̄),

V̄r = V̄l(x̄) – k1(x – x̄) (x ≥ x̄).
(44)

The following technical lemma is on the profile of V̄ , necessary to consider property of
V̄ .

Lemma 4.10

V̄ ′
l (x)

⎧
⎪⎪⎨

⎪⎪⎩

> –k1, 0 < x < x̄, x̄ < x,

= –k1, x = x̄, x,

< –k1, x < x < x̄.

(45)

With the help of Lemma 4.10, we show that the candidate solution actually satisfies the
HJBQVI (12).

Theorem 4.2 The exact solution (30) satisfies the HJBQVI (12) a.e. for x ≥ 0.



Yaegashi et al. Journal of Mathematics in Industry             (2019) 9:5 Page 11 of 26

According to Theorem 4.2, hereafter, we do not distinguish the candidate of the solu-
tions to HJBQVI (30) and the value function (11). Namely, we have

V = V̄ . (46)

Next, we prove a mathematical property of the exact solution (30). We prove that the
exact solution (30) is a viscosity solution [10], which is an appropriate weak solution to
degenerate elliptic and parabolic differential equations. The definition of viscosity solution
is as follows.

Definition 4.1
Viscosity super-solution
A function V ∈ C[0,∞) such that V (0) ≥ 0 satisfying (15) is a viscosity super-solution

to the HJBQVI (12) if

min
{

–Lv(x) – RxM + rxm, v(x) – Mv(x)
} ≥ 0 (47)

for all x ∈ (0,∞) and for all v ∈ C2([0,∞)) such that v(x) = V (x) and locally v ≤ V near x.
Viscosity sub-solution
A function V ∈ C[0,∞) such that V (0) ≤ 0 satisfying (15) is a viscosity sub-solution to

the HJBQVI (12) if

min
{

–Lv(x) – RxM + rxm, v(x) – Mv(x)
} ≤ 0 (48)

for all x ∈ (0,∞) and for all v ∈ C2([0,∞)) such that v(x) = V (x) and locally v ≥ V near x.
Viscosity solution
A function V ∈ C[0,∞) such that V (0) = 0 satisfying (15) is a viscosity solution to the

HJBQVI (12) if it is a viscosity super-solution as well as a viscosity sub-solution.

Viscosity property of the constructed exact solution is checked through Definition 4.1.

Theorem 4.3 The exact solution (30) is a viscosity solution to the HJBQVI (12).

From Theorems 4.1, 4.2, and 4.3, we can prove the following theorem, the most impor-
tant theorem in this paper.

Theorem 4.4 The value function is the exact viscosity solution (30) to the HJBQVI (12)
whose coefficients are uniquely determined from (35). Therefore, the solution of the form
(30) is unique.

5 Numerical method for computing the coefficients
In the previous section, we showed that the coefficients (a, x, x̄) are found uniquely; how-
ever, their exact values cannot be calculated analytically. We found that a dynamical
system-based approach can be used for approximating the coefficients in a stable manner.
The numerical method is presented and its convergence is analyzed, and its performance
is examined in this section.
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5.1 Dynamical system
Subtracting the middle equation in (35) from the below equation in (35) and solving for a
yields

a =
–A1M(x̄M–1 – xM–1) – A2m(x̄m–1 – xm–1)

β(x̄β–1 – xβ–1)
. (49)

Substituting (49) into the middle equation of (35) leads to

k1 +
[

–A1M(x̄M–1 – xM–1) – A2m(x̄m–1 – xm–1)
β(x̄β–1 – xβ–1)

]

βx̄β–1

+ A1Mx̄M–1 + A2mx̄m–1 = 0, (50)

and substituting (49) into the above equation of (35) then yields

–k1(x̄ – x) – k0 + A1
(
xM – x̄M)

+ A2
(
xm – x̄m)

+
[

–A1M(x̄M–1 – xM–1) – A2m(x̄m–1 – xm–1)
β(x̄β–1 – xβ–1)

]
(
xβ – x̄β

)
= 0. (51)

By numerically solving the nonlinear Eqs. (50) and (51), x̄ and x would be found. In this
paper, the nonlinear Eqs. (50) and (51) with an artificial temporal term are proposed as
the system of ODEs, a dynamical system, as

dx
dt

= f(x) with x =

(
x̄
x

)

, (52)

where

f(x) =

(
f1(x̄, x)
f2(x̄, x)

)

=

(
k1(x̄ – x) + k0 – h(xβ – x̄β ) – A1(xM – x̄M) – A2(xm – x̄m)

k1 + hβx̄β–1 + A1Mx̄M–1 + A2mx̄m–1

)

(53)

and

h(x̄, x) =
–A1M(x̄M–1 – xM–1) – A2m(x̄m–1 – xm–1)

β(x̄β–1 – xβ–1)
. (54)

Let x̄ = x̄∗ and x = x∗ satisfy (35). Then, we have

h
(
x̄∗, x∗) = a. (55)

The system (52) is numerically integrated until the quasi-steady state is attained with the
forward Euler method. The coefficient a can be calculated with (54) using the obtained x̄∗

and x∗. Thus, V (x) (30) can be obtained. Note that there is a unique equilibrium point in
the system (52) by Theorem 4.1 under the assumptions (20) through (22).
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5.2 Stability of the equilibrium point
Based on the following easy but pivotal lemma, local stability of the equilibrium point
(x̄∗, x∗) is investigated.

Lemma 5.1 A 2 × 2 matrix A is locally asymptotically stable if and only if

tr A < 0 and det A > 0. (56)

Let the Jacobian at (x̄, x) be

A =

(
∂f1
∂ x̄ (x̄, x) ∂f1

∂x (x̄, x)
∂f2
∂ x̄ (x̄, x) ∂f2

∂x (x̄, x)

)

. (57)

By Lemma 5.1, the following theorem shows local stability of our dynamical system,
supporting our approach to find the unknown coefficients through solving the dynamical
system.

Theorem 5.1 The equilibrium point (x̄∗, x∗) in (52) is locally asymptotically stable.

5.3 Numerical experiment
Finally, the system (52) is discretized with the conventional forward Euler method. The
parameters are set as μ = 1.7×10–1 (1/year), σ = 5.3×10–1 (1/year1/2), m = 1.8 (-), M = 0.5
(-), δ = 1.0 (1/year), r = 5.0×10–4 (-), R = 1.0×10–1 (-), k0 = 1.0×101 (-) and k1 = 1.0×100

(-) [2]. These parameters satisfy the assumptions (20) through (22). The increment for the
time integration is set as 
t = 0.01 for stable temporal evolution of the system. The time
integration marches until the error is under the error tolerance as

error = max
x

∣
∣xn+1 – xn∣∣ < ε, (58)

where n represents the time step and ε = 10–10 is the error tolerance. With the computed x̄
and x, a is calculated by (54). The initial estimations for the thresholds are set as x̄ = 7500
and x = 5500. The computed thresholds are x̄∗ = 7352.93 and x∗ = 5757.82. The computed
a∗ is a∗ = 4.39 × 10–7 > 0, which is consistent with Lemma 3.1. The same steady solution
can be obtained for different initial estimations. Table 2 shows time evolution of the error,
the residuals for each nonlinear Eqs. (35) as

Res 1 =
∣
∣–k1(x̄ – x) – k0 + a

(
xβ – x̄β

)
+ A1

(
xM – x̄M)

+ A2
(
xm – x̄m)∣

∣, (59)

Res 2 =
∣
∣aβx̄β–1 + A1Mx̄M–1 + A2mx̄m–1 + k1

∣
∣, (60)

and

Res 3 =
∣
∣aβxβ–1 + A1MxM–1 + A2mxm–1 + k1

∣
∣ (61)

during the computational period, and the computed thresholds. According to Table 2, the
errors and the residuals monotonically decreases as the time marches and the computation
ends at t = 5.5 × 107, indicating that the nonlinear Eqs. (35) are correctly solved; each
residual is less than 1.0 × 10–8. In addition, we numerically confirmed that tr A < 0 and
det A > 0, verifying the theoretical result.
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Table 2 Time evolution of the error, the residuals and the computed thresholds

t (×107) Error Res 1 Res 2 Res 3 x̄ x

0.0 1.6× 10–1 1.6× 101 1.3× 10–2 1.3× 10–2 7500 5500
1.0 5.7× 10–6 5.7× 10–4 5.3× 10–4 5.3× 10–4 7376.14 5735.92
2.0 5.0× 10–7 5.0× 10–5 4.7× 10–5 4.7× 10–5 7354.98 5755.88
3.0 4.4× 10–8 4.4× 10–6 4.2× 10–6 4.2× 10–6 7353.11 5757.65
4.0 3.9× 10–9 3.9× 10–7 3.7× 10–7 3.7× 10–7 7352.95 5757.8
5.0 3.5× 10–10 3.5× 10–8 3.3× 10–8 3.3× 10–8 7352.93 5757.82
5.5 9.9× 10–11 1.0× 10–10 9.5× 10–9 9.5× 10–9 7352.93 5757.82

6 Conclusions
This paper formulated the impulse control model of an animal population management,
presented a candidate of the exact solutions of the HJBQVI, and proved its optimality and
unique solvability within a certain class of solutions from a viscosity viewpoint. A numeri-
cal method to compute the coefficients for the exact solution to the HJBQVI was also pre-
sented and examined. Our future research will address analysis of time-dependent coun-
terpart of the presented impulse control model. Such an extension would be necessary for
dealing with seasonal population dynamics.

Appendix A

Proof of Lemma 2.1 If no intervention is performed (τ1 = ∞), from the definition of the
value function (11),

E
[∫ ∞

0
e–δs(RXM

s – rXm
s

)
ds

]

≤ V (x) (62)

holds true. Since we have

E
[∫ ∞

0
e–δsXγ

s ds
]

=
xγ

δ – μγ – 1
2σ 2γ (γ – 1)

(63)

by the property of geometric Brownian motion,

E
[∫ ∞

0
e–δs(RXM

s – rXm
s

)
ds

]

=
RxM

δ – μM – 1
2σ 2M(M – 1)

+
–rxM

δ – μm – 1
2σ 2m(m – 1)

= A1xM + A2xm (64)

holds true. This is the lower bound of V (x). Since for any Xs, we have

RXM
s – rXm

s ≤ RXM
s (65)

and thus
∫ ∞

0
e–δs(RXM

s – rXm
s

)
ds ≤

∫ ∞

0
e–δsRXM

s ds. (66)
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Therefore, we have

∫ ∞

0
e–δs(RXM

s – rXm
s

)
ds –

∞∑

i=1

e–δτi K(ζi)

≤
∫ ∞

0
e–δsRXM

s ds –
∞∑

i=1

e–δτi K(ζi)

<
∫ ∞

0
e–δsRXM

s ds. (67)

Taking the expectation in both sides of (67) yields

J(x;η) = E

[∫ ∞

0
e–δs(RXM

s – rXm
s

)
ds –

∞∑

i=1

e–δτi K(ζi)

]

≤ E
[∫ ∞

0
e–δsRXM

s ds
]

= A1xM. (68)

Taking “sup” in the left hand side of (68) leads to

V (x) = sup
η∈A

J(x;η) = sup
η∈A

E

[∫ ∞

0
e–δs(RXM

s – rXm
s

)
ds –

∞∑

i=1

e–δτi K(ζi)

]

≤ A1xM, (69)

which is the upper bound of V (x). �

Proof of Lemma 4.1 Assume a = 0. From the middle and lower lines of (35), we have

A1MxM–1 = –k1 – A2mxm–1. (70)

The left hand side of (70) takes ∞ at x = 0, monotonically decreases with respect to x and
takes 0 at x = ∞, while the right hand side of (70) takes –k1 < 0 at x = 0, monotonically
increases with respect to x and takes –∞ at x = ∞. According to the intermediate value
theorem, (70) has a unique solution



x such that 0 <



x< ∞. Thus, when a = 0,



x= x̄ = x and

it is a contradiction. �

Proof of Lemma 4.2 The second derivative of (36) is

g ′′(x) = aβ(β – 1)(β – 2)xβ–3 + A1M(M – 1)(M – 2)xM–3

+ A2m(m – 1)(m – 2)xm–3. (71)

Since aβ(β – 1)(β – 2) ≥ 0, A1M(M – 1)(M – 2) ≥ 0 and A2m(m – 1)(m – 2) ≥ 0, we have

g ′′(x) > 0, x > 0. (72)
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Then, (37) can be rewritten as

g ′(x) = aβ(β – 1)xβ–2 + A1M(M – 1)xM–2 + A2m(m – 1)xm–2

= xM–2{aβ(β – 1)xβ–M + A1M(M – 1) + A2m(m – 1)xm–M}
, (73)

which gives g ′(0) = –∞ since 2 – M > 0. Define x = x̂ such that g ′(x) = 0. Then, from (73),
we have

aβ(β – 1)x̂β–M = –A1M(M – 1) – A2m(m – 1)x̂m–M. (74)

By the classical intermediate value theorem, (74) has a unique x̂ such that 0 < x̂ < ∞. �

Proof of Lemma 4.3 By differentiating (74) with respect to a,

{
aβ(β – 1)(β – 2)x̂β–3 + A1M(M – 1)(M – 2)x̂M–3 + A2m(m – 1)(m – 2)x̂m–3} dx̂

da

= –β(β – 1)x̂β–2 (75)

is obtained. By using (71), (75) can be rewritten as

g ′′(x̂)
dx̂
da

= –β(β – 1)x̂β–2. (76)

Since g ′′(x) > 0, we obtain

dx̂
da

= –
β(β – 1)

g ′′(x̂)
x̂β–2 < 0. (77)

�

Proof of Lemma 4.5 From the lower of the system of nonlinear Eqs. (35),

aβxβ–1(a) + A1MxM–1(a) + A2mxm–1(a) = –k1 (78)

holds true. Differentiating (78) with respect to a leads to

{
aβ(β – 1)xβ–2 + A1M(M – 1)xM–2 + A2m(m – 1)xm–2} dx

da
= –βxβ–1. (79)

By using (73), (79) can be rewritten as

g ′(x)
dx
da

= –βxβ–1, (80)

which is equivalent to

dx
da

= –
βxβ–1

g ′(x)
. (81)
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According to Table 1, we have

g ′(x) < 0, x < x̂ (82)

and thus

dx
da

= –
βxβ–1

g ′(x)
> 0. (83)

We can calculate dependence of x̄(a) to a in the similar manner as

dx̄
da

= –
βx̄β–1

g ′(x̄)
. (84)

Again according to Table 1, we have

g ′(x̄) > 0, x̂ < x̄ (85)

and thus

dx̄
da

= –
βx̄β–1

g ′(x̄)
< 0. (86)

The results (84) and (86) indicate that x monotonically increases with respect to a, while
x̄ monotonically decreases with respect to a. �

Proof of Lemma 4.6 According to (41) with a = â, we have

x(â) = x̂(â) = x̄(â) = y. (87)

By (35) we have

âβyβ–1 + A1MyM–1 + A2mym–1 = –k1. (88)

Since g ′(x̂) = 0 and y = x̂, the equality

âβ(β – 1)yβ–1 + A1M(M – 1)yM–1 + A2m(m – 1)ym–1 = 0 (89)

holds true. Multiplying β – 1 > 0 by (88) and subtracting (89) from it gives

A1M(β – M)yM–1 + A2m(β – m)ym–1 = –k1(β – 1). (90)

Equation (90) is written as

–C1yM–1 + C2ym–1 = k1, (91)

where C1 > 0 and C2 > 0, which are constant and not dependent of k1. According to the
classical intermediate value theorem, (91) has a unique solution y = ŷ(k1) such that 0 <



Yaegashi et al. Journal of Mathematics in Industry             (2019) 9:5 Page 18 of 26

ŷ(k1) < ∞ and is not dependent of k1 > 0 and a. By using ŷ(k1), from (88), we can calculate
unique a = â(k1). This is the upper bound of a. If a > â(k1), x(a) > x̄(a) holds true since
x(â) = x̄(â) and Lemma 4.5. This contradicts (41). Therefore, â(k1) is the upper bound of
a with which x and x̄ exist. �

Proof of Lemma 4.7 By g ′(x̂) = 0, we have

g(x̂) = A1Mx̂M–1 (β – M)
(β – 1)

+ A2mx̂m–1 (β – m)
(β – 1)

+ k1. (92)

We introduce the function s:

s(a) = A1Mx̂M–1 (β – M)
(β – 1)

+ A2mx̂m–1 (β – m)
(β – 1)

+ k1 = g(x̂) (93)

whose first derivative is

ds
da

= A1M(M – 1)x̂M–2 (β – M)
(β – 1)

dx̂
da

+ A2m(m – 1)x̂m–2 (β – m)
(β – 1)

dx̂
da

> 0. (94)

Since x̂ = x̄ = x = ŷ when a = â, we have

s(â) = A1MŷM–1 (β – M)
(β – 1)

+ A2mŷm–1 (β – m)
(β – 1)

+ k1. (95)

By (90), (95) becomes s(â) = 0. Since the first derivative of s is larger than 0, we have

g(x̂) = s(a) < 0, 0 < a < â. (96)

It is proved that the inequality (40) is satisfied under without any additional conditions
to k1. Thus, there exist unique two solutions to g(x) = 0, x(a) and x̄(a) under without any
additional conditions to k1. �

Proof of Lemma 4.8 From the upper of the system of nonlinear Eqs. (35),

ax̄(a)β + A1x̄(a)M + A2x̄(a)m

= –k1
(
x̄(a) – x(a)

)
– k0 + ax(a)β + A1x(a)M + A2x(a)m (97)

holds true. Manipulating (97) yields

ax̄β + A1x̄M + A2x̄m + k1x̄ + k0 – axβ – A1xM – A2xm – k1x = 0. (98)

We define F(a) as the left hand side of (98). Since x̄ = x = y when a = â, F(â) = k0 > 0. Then,
we have

dF
da

= x̄β – xβ > 0, 0 < a < â. (99)

Here, we used the middle and lower lines of (35). The second derivative of F(a) is calcu-
lated as

d2F
da2 =

d
da

{
x̄β – xβ

}
= βx̄β–1 dx̄

da
– βxβ–1 dx

da
< 0. (100)
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In addition, we have

dF
da

(â) = x̄(â)β – x(â)β = ŷβ – ŷβ = 0. (101)

Notice that F(0) < F(â) = k0 and thus when k0 = 0, we have F(0) < F(â) = 0. Therefore, if k0

is sufficiently small, then there is a unique a∗ such that F(a∗) = 0 and 0 < a∗ < â. �

Proof of Lemma 4.9 We investigate F(0). At first, we investigate lima→+0 x̄(a) and
lima→+0 x(a). From Lemma 4.5,

x̄(0) > x̄(a) > x̄
(
a′) (102)

holds true. From the Lemma 4.5, we have

x(0) < x(a) < x
(
a′) < ∞. (103)

Assume x̄(0) < ∞. Under the limit a → +0, we have aβx̄β–1 → 0. From the middle line of
(35),

lim
a→+0

{
aβx̄β–1 + A1Mx̄M–1 + A2mx̄m–1} = A1Mx̄(0)M–1 + A2mx̄(0)m–1 = –k1 (104)

holds true. In addition, from the lower line of (35),

lim
a→+0

{
aβxβ–1 + A1MxM–1 + A2mxm–1} = A1Mx(0)M–1 + A2mx(0)m–1 = –k1 (105)

holds true. We define the following function

N(x) = A1MxM–1 + A2mxm–1 + k1. (106)

According to the classical intermediate value theorem, N(x) = 0 has a unique solution
x =

�
x such that 0 <

�
x< ∞. This indicates x(0) = x̄(0) =

�
x< ∞. From the upper of the sys-

tem of nonlinear Eqs. (35), since x(0) = x̄(0) < ∞, when a = 0, we have k0 = 0. This result
contradicts k0 > 0. Therefore, x̄(0) = ∞ holds true. We calculate F(0) as

F(0) = lim
a→+0

{
ax̄β + A1x̄M + A2x̄m + k1x̄ – axβ – A1xM – A2xm – k1x + k0

}

= lim
a→+0

{
ax̄β + A1x̄M + A2x̄m + k1x̄

}
+ c, (107)

where c < ∞ is a constant independent of a. From the middle line of (35), we have

ax̄β =
–k1x̄ – A1Mx̄M – A2mx̄m

β
. (108)
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Substituting (108) into (107) yields

lim
a→+0

{
ax̄β + A1x̄M + A2x̄m + k1x̄

}
+ c

= lim
a→+0

1
β

{
A1(β – M)x̄M + A2(β – m)x̄m + k1(β – 1)x̄

}
+ c

= –∞ (109)

and thus

F(0) = lim
a→+0

{
ax̄β + A1x̄M + A2x̄m + k1x̄

}
+ c = –∞. (110)

Again, by the classical intermediate value theorem, there exists a unique a∗ such that sat-
isfies F(a∗) = 0 and 0 < a∗ < â for any k0 > 0. �

Proof of Lemma 4.10 From the middle and lower lines (35), the middle line of (45) is ob-
vious. Since V̄ ′

l (x) + k1 = g(x), according to Table 1, we have

V̄ ′
l (x) > –k1 in 0 < x < x̄, x̄ < x (111)

and

V̄ ′
l (x) < –k1 in x < x < x̄. (112)

These results shows that the upper and lower in (45) are satisfied. �

Appendix B
This appendix contains the proofs of Theorems 4.2 and 4.3.

Proof of Theorem 4.2 We divide the domain into (0, x̄) and [x̄,∞).
(1) x ∈ (0, x̄)

By the way of constructing the solution (23),

LV̄l(x) + RxM – rxm = 0 in (0, x̄) (113)

holds true. Thus, we should prove

MV̄l(x) – V̄l(x)

= sup
ζ>0

[
–k1ζ – k0 + V̄l(x – ζ )

]
– V̄l(x) ≤ 0 in (0, x̄). (114)

When ζ ∗ > 0, from the first order optimality condition [27] in “sup” operator in (14),
V̄ ′

l (x – ζ ∗) = –k1 holds true. From Theorem 4.1, the system of nonlinear Eqs. (35)
has unique solution and we have x – ζ ∗ = x̄ or x – ζ ∗ = x. If x – ζ ∗ = x̄, x > x̄ holds
true and this is a contradiction. Thus, we have ζ ∗ = x – x. When formally ζ ∗ = 0,

MV̄l(x) – V̄l(x) = –k0 ≤ 0 (115)
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holds true. We further divide the domain into three parts as follows.
(a) 0 < x < x

Assume ζ ∗ > 0. Then, ζ ∗ = x – x < 0 holds true and this is a contradiction.
Thus, formally ζ ∗ = 0 holds true. From (115),

MV̄l(x) – V̄l(x) = –k0 ≤ 0 (116)

holds true. This result shows that the condition is satisfied in 0 < x < x.
(b) x = x

Assume ζ ∗ > 0. Then, ζ ∗ = x – x = 0 holds true and this is a contradiction.
Thus, formally ζ ∗ = 0 holds true. From (115),

MV̄l(x) – V̄l(x) = –k0 ≤ 0 (117)

holds true. This result shows that the condition is satisfied at x = x.
(c) x < x < x̄

Assume ζ ∗ > 0. Then, we have ζ ∗ = x – x > 0 in this case and the assumption is
in fact valid. We then obtain

MV̄l(x) – V̄l(x) = sup
ζ>0

[
–k1ζ – k0 + V̄l(x – ζ )

]
– V̄l(x)

= –k1(x – x) – k0 + V̄l(x) – V̄l(x). (118)

We define the following function as

T(x) = –k1(x – x) – k0 + V̄l(x) – V̄l(x). (119)

From (43),

T(x̄) = –k1(x̄ – x) – k0 + V̄l(x) – V̄l(x̄) = 0 (120)

holds true and we have T ′(x) = –k1 – V̄ ′
l (x). From (45),

T ′(x) = –k1 – V̄ ′
l (x) > 0 in x < x < x̄ (121)

and thus

MV̄l(x) – V̄l(x) = T(x) < 0 in x < x < x̄. (122)

(2) x ∈ [x̄,∞)
By the way of constructing the solution (29),

MV̄r – V̄r = 0 in [x̄,∞) (123)

holds true. Thus, we should prove

LV̄r + RxM – rxm ≤ 0 (124)
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in (0, x̄). For V̄l(x),

LV̄l(x) + RxM – rxm = 0 in [x̄,∞) (125)

holds true. Substituting (125) into LV̄r + RxM – rxm yields

LV̄r + RxM – rxm = LV̄r – LV̄l

=
1
2
σ 2x2(V̄ ′′

r – V̄ ′′
l
)

+ μx
(
V̄ ′

r – V̄ ′
l
)

– δ(V̄r – V̄l). (126)

Since V̄ ′′
r = 0 and V̄ ′′

l (x) = g ′(x), by Table 1, we have V̄ ′′
l (x) = g ′(x) > 0 in x ≥ x̄ and

thus

V̄ ′′
r – V̄ ′′

l < 0. (127)

Since V̄ ′
r = –k1 and V̄ ′

l > –k1 from Lemma 4.10,

V̄ ′
r – V̄ ′

l < 0 (128)

holds true. We define the following function as

Q(x) = V̄r – V̄l = V̄l(x̄) – k1(x – x̄) – V̄l(x), (129)

and

Q(x̄) = V̄l(x̄) – V̄l(x̄) = 0 (130)

at x = x̄. The first derivative of (129) is calculated as

Q′(x) = –k1 – V̄ ′
l (x). (131)

Since V̄ ′
l ≥ –k1 in x ≥ x̄ from Lemma 4.10,

Q′(x) = –k1 – V̄ ′
l (x) ≤ 0 (132)

holds true. Thus,

V̄r – V̄l = Q(x) ≤ 0 in x ≥ x̄. (133)

Therefore, from (127), (128), and (133),

LV̄r + RxM – rxm = L(V̄r – V̄l) < 0 in x ≥ x̄, (134)

leading to (124). �

Proof of Theorem 4.3 Except at x = x̄, it is clear that the exact solution (30) is a viscosity
solution since the exact solution (30) is of the C2-class. Thus, we only have to investigate
the viscosity property at the point x = x̄. We prove V is a sub and supersolution at x = x̄.
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Since V ′′
l (x) = g ′(x) in x < x̄, by Table 1, we have

V ′′
l (x̄ – 0) = g ′(x̄ – 0) > 0 (135)

holds true. In addition, since the exact solution is linear in x > x̄, V ′′
r (x̄ + 0) = 0 holds true.

From the HJBQVI (12),

–LV (x) – RxM + rxm = δVl – μxV ′
l –

σ 2x2

2
V ′′

l – RxM + rxm = 0 in (0, x̄) (136)

holds true.
(a) For viscosity sub-solution

Let v be a test function v(x̄) = V (x̄) and v(x) ≥ V (x) near x̄. We should prove

min
{

–Lv(x̄) – Rx̄M + rx̄m, v(x̄) – Mv(x̄)
} ≤ 0. (137)

From the HJBQVI (12),

min
{

–LV (x̄) – Rx̄M + rx̄m, V (x̄) – MV (x̄)
}

= 0 (138)

holds true. From the definition of the test function and V ∈ C1(0, +∞), v′(x) = V ′(x)
holds true near x̄. This leads to

V (x̄) – MV (x̄) = v(x̄) – Mv(x̄) = 0, (139)

showing that

min
{

–Lv(x̄) – Rx̄M + rx̄m, v(x̄) – Mv(x̄)
}

= min
{

–Lv(x̄) – Rx̄M + rx̄m, 0
} ≤ 0. (140)

(b) For viscosity super-solution
Let v be a test function such that v(x̄) = V (x̄) and v(x) ≤ V (x) near x̄. We have to

prove

min
{

–Lv(x̄) – Rx̄M + rx̄m, v(x̄) – Mv(x̄)
} ≥ 0. (141)

Since v(x) = V (x) and v′(x) = V ′(x), we have

–Lv(x̄) – Rx̄M + rx̄m = δv – μx̄v′ –
σ 2x̄2

2
v′′ – Rx̄M + rx̄m

= δV – μx̄V ′ –
σ 2x̄2

2
v′′ – Rx̄M + rx̄m. (142)

By (136), we also have

δV – μx̄V ′ – Rx̄M + rx̄m =
σ 2x̄2

2
V ′′

l (x̄ – 0). (143)
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Combining (142) and (143) gives

–Lv(x̄) – Rx̄M + rx̄m = δV – μx̄V ′ –
σ 2x̄2

2
v′′ – Rx̄M + rx̄m

=
σ 2x̄2

2
{

V ′′
l (x̄ – 0) – v′′(x̄)

}
. (144)

Since V – v ≥ 0 near x̄ and V (x̄) = v(x̄), we arrive at the inequality

V ′′
l (x̄ – 0) – v′′(x̄) ≥ 0, (145)

leading to

–Lv(x̄) – Rx̄M + rx̄m ≥ 0. (146)

Thus, the solution to the HJBQVI (12) is a viscosity solution at x = x̄. Therefore, the
exact solution (30) is a viscosity solution. �

Appendix C
This appendix presents the proof of Theorem 5.1.

Proof of Theorem 5.1 The signs of tr A and det A at (x̄∗, x∗) are firstly analyzed. Since
V ′′

l (x) = g ′(x) in x < x̄, Table 1 leads to

V ′′
l
(
x∗) < 0 and V ′′

l
(
x̄∗) > 0. (147)

By differentiating (54) with respect to x̄, we have

∂h
∂ x̄

(x̄, x)βx̄β–1 + h(x̄, x)β(β – 1)x̄β–2 + A1M(M – 1)x̄M–2 + A2m(m – 1)x̄m–2

=
∂h
∂ x̄

(x̄, x)βxβ–1, (148)

which can be rewritten as

∂h
∂ x̄

(
x̄∗, x∗)βx̄∗β–1 + V ′′

l
(
x̄∗) =

∂h
∂ x̄

(
x̄∗, x∗)βx∗β–1 (149)

when (x̄, x) = (x̄∗, x∗) by (37). Then, we have

∂h
∂ x̄

(
x̄∗, x∗) =

1
β(x∗β–1 – x̄∗β–1)

V ′′
l
(
x̄∗) < 0. (150)

In the same way, by (147), differentiating (54) with respect to x gives

∂h
∂x

(
x̄∗, x∗) =

1
β(x̄∗β–1 – x∗β–1)

V ′′
l
(
x∗) < 0. (151)

The components of the Jacobian (57) are calculated as

∂f1

∂ x̄
= k1 –

(
xβ – x̄β

)∂h
∂ x̄

+ hβx̄β–1 + MA1x̄M–1 + mA2x̄m–1, (152)
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∂f1

∂x
= –k1 –

(
xβ – x̄β

)∂h
∂x

– hβxβ–1 – MA1xM–1 – mA2xm–1, (153)

∂f2

∂ x̄
= βx̄β–1 ∂h

∂ x̄
+ hβ(β – 1)x̄β–2 + A1M(M – 1)x̄M–2 + A2m(m – 1)x̄m–2, (154)

and

∂f2

∂x
= βx̄β–1 ∂h

∂x
. (155)

By (150) and (151), the signs of the components at the equilibrium point are calculated as

∂f1

∂ x̄

∣
∣
∣
∣
(x̄,x)=(x̄∗ ,x∗)

= k1 –
(
x∗β – x̄∗β

)∂h
∂ x̄

(
x̄∗, x∗) + V ′

l
(
x̄∗) < 0, (156)

∂f1

∂x

∣
∣
∣
∣
(x̄,x)=(x̄∗ ,x∗)

= –k1 –
(
x∗β – x̄∗β

)∂h
∂x

(
x̄∗, x∗) – V ′

l
(
x∗) < 0, (157)

∂f2

∂ x̄

∣
∣
∣
∣
(x̄,x)=(x̄∗ ,x∗)

= βx̄∗β–1 ∂h
∂ x̄

(
x̄∗, x∗) + V ′′

l
(
x̄∗) < 0, (158)

and

∂f2

∂x

∣
∣
∣
∣
(x̄,x)=(x̄∗ ,x∗)

= βx̄∗β–1 ∂h
∂x

(
x̄∗, x∗) < 0. (159)

Hence, we have (56). Therefore, by Lemma 5.1, the equilibrium point is locally asymp-
totically stable. If the initial estimation of (x̄, x) is sufficiently near the equilibrium point
(x̄∗, x∗), the solution of the system of the ODEs (52) converges to (x̄∗, x∗). �
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