
Göttlich and Knapp Journal of Mathematics in Industry            (2020) 10:5 
https://doi.org/10.1186/s13362-020-00074-4

R E S E A R C H Open Access

Uncertainty quantification with risk
measures in production planning
Simone Göttlich1* and Stephan Knapp1

*Correspondence:
goettlich@uni-mannheim.de
1Department of Mathematics,
University of Mannheim,
Mannheim, Germany

Abstract
This paper is concerned with a simulation study for a stochastic production network
model, where the capacities of machines may change randomly. We introduce
performance measures motivated by risk measures from finance leading to a
simulation based optimization framework for the production planning. The same
measures are used to investigate the scenario when capacities are related to workers
that are randomly not available. This corresponds to the study of a workforce
planning problem in an uncertain environment.
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1 Introduction
Uncertainty quantification is currently an active research topic including a wide field of
applications. In this work, we focus on the numerical evaluation of performance measures
for a production network model whose dynamics is stochastic in the sense that machine
failures or capacity drops can randomly occur. According to [21], this scenario fits into
the context of parametric variability which is one possible source of uncertainty. In or-
der to measure the performance of a production regarding different production plans,
risk-adjusted performance measures might be used. They are formally given as a map-
ping from the expected outcome (e.g. profit) and its corresponding risk to some value, see
[12, 26]. Hence, measuring the performance of a stochastic production model is related
to the quantification of risk or uncertainty since the risk is caused by equipment failure
being one part of business risk.

Having tailored performance measures at hand, production planning considerations and
questions of control can be studied. For example, production planning and control of con-
tinuous production models have been studied in [1, 25] and production planning of dis-
crete production models with randomness in [20]. Obviously, there is a high interest in
the definition of performance measures that support planning decisions and also allow
for optimization purposes, see [23, 24]. However, we remark that the model under con-
sideration is only academic so far. If production data is available, continuous production
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models can be adapted to real production purposes using data-fitted approaches as for
instance done in [11, 14].

The stochastic production network model under consideration has been originally in-
troduced in [16] and is based on the deterministic production network model from [6].
There have been previous stochastic extensions in [15, 17] of the deterministic model but
in [16] the dependence of the machine failures on the actual workload of the machine has
been introduced leading to a more complex dynamics. In contrast to agent-based mod-
els, the continuous equations govern the evolution of aggregated quantities (such as the
density of goods) and are valid in the case of homogenous mass production. By using this
model, we can predict future outcomes of production and also machine breakdowns or
capacity drops. A simulation based optimization approach is applied to study the distri-
bution (or routing) of goods within the network, or, how the capacity should be chosen in
advance for a fixed time period. To do so, we need performance measures, i.e. measures
that translate the stochastic outcome into reasonable quantities, to validate decisions. The
extended numerical study can be also used as a tool to support decision making processes.

Considering monetary quantities, appropriate performance measures have been intro-
duced in the literature of finance [2, 10, 27] and are based on so-called risk measures.
Famous examples are the expectation, Value at Risk and Average Value at Risk (also called
conditional Value at Risk). They are originally introduced in the finance area to quantify fi-
nancial risk. Since risk measures are fairly general, they can be also used in other contexts.
In work [5], risk measures have been introduced for the optimization of oil production.
There, the focus is the combination and comparison of risk measures in optimization for-
mulations. However, our major goal is to focus on risk measures, their evaluation and
impact for the stochastic production network model. Therefore, we examine how the dis-
tribution rates for an optimal routing should be chosen on the base of the introduced
performance measures in a simulation based optimization. Furthermore, we introduce a
setting, where the capacity is determined as a sum of individual capacities, which can be on
or off, respectively. This allows for a numerical analysis of the maximal possible capacity,
e.g. number of workers, with respect to the performance measures.

This paper is organized as follows: in Sect. 2 we introduce the stochastic production
network model and its extensions. Section 3 is devoted to the performance measures.
Numerical simulation results are studied in Sect. 4, where mainly two cases are considered:
the optimal routing and the workforce planning.

2 Stochastic model equations
The core model is a production network model consisting of a coupled system of partial
(PDE) and ordinary (ODE) differential equations. Different to the existing literature on
flow models, continuous production models (PDE and ODE) allow for the description of
transient production processes. We start with the introduction of the deterministic model
and present then two possible stochastic extensions.

2.1 The deterministic model
We briefly recall the production network model from [6, 13] and its stochastic extension
to a load-dependent model from [16]. To focus on the main ideas, we restrict on the case of
a production network consisting of one queue-processor unit first. This means, we con-
sider a processor with an unbounded queue in front, which represents the storage. We
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assume that the processor is defined on an interval (a, b) ⊂ R, i.e., with length L = b – a,
and use ρ(x, t) as the density of goods at x ∈ (a, b) and time t ≥ 0. Here, the interpretation
of x can be the spatial position of the goods within the processor or the so-called degree
of completion. The dynamics of the density is given by the following hyperbolic partial
differential equation

∂tρ(x, t) + ∂x min
{

vρ(x, t),μ
}

= 0, (1)

where μ ≥ 0 is the maximal capacity and v > 0 the production velocity. If we prescribe a
processing time Tprod, we have the relation v = L

Tprod . The queue is placed in front of the
processor and its length q is modeled by the following ordinary differential equation

∂tq(t) = gin(t) – gout(t), (2)

i.e. as the balance between inflow into and outflow. Here, gin(t) is the inflow into the queue,
which can be an externally given inflow Gin(t) in case there is no predecessor. If the queue
has predecessors, the inflow into the queue is the weighted sum of the outflow out of the
incoming processors. The outflow of the queue can be described as follows: if the queue
is non-empty, the processor takes its maximal capacity μ, and if the queue is empty, the
processor can take the inflow into the queue, which is bounded by the maximal capacity
μ. Summarizing, this reads as

gout(t) =

⎧
⎨

⎩
min{Gin(t),μ}, if q(t) = 0,

μ, if q(t) > 0.

The coupling of the processor and the corresponding queue is described by a boundary
condition ρ(a, t) = gout(t)

v and initial conditions ρ(x, 0) = ρ0(x) ∈ L1((a, b)), q(0) = q0 ∈ R≥0

are given.
Figure 1 summarizes the modeling equations graphically, where the gray boxes at a rep-

resent the queue load following the ODE and the black solid line the density on (a, b) with
dynamics described by the hyperbolic PDE.

We now describe the extension to the network case, see [6]. Suppose that equation (1)
holds for a density ρe on interval (ae, be) with production velocity ve > 0 and capacity μe ≥
0 for every arc (or processor) e ∈A in a directed network G = (V ,A), whereG describes the
production network topology with nodes V and edges A = {1, . . . , N}. We denote by δ–

v and
δ+

v the set of all ingoing and outgoing arcs for every vertex v ∈ V . At vertices without any
predecessor v ∈ Vin = {v ∈ V : δ–

v = ∅}, we define a time-dependent inflow function Gv
in(t)

Figure 1 Production dynamics on one edge
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Figure 2 Diamond network with seven processors

and for every v ∈ V with |δ+
v | > 0 we assume distribution rates Av,e ∈ [0, 1], e ∈ δ+

v , i.e. how
much of the flow is distributed to the subsequent processors. They satisfy

∑
e∈δ+

v
Av,e(t) = 1.

An example of a production network is shown in Fig. 2, where, for example, at node 2
the distribution rates are given as A2,2 = α1 and A2,3 = 1 – α1.

Letting s(e) denote the starting node for a given arc e, we adapt the flow into and out of
the queue of processor e as follows:

ge
in(t) =

⎧
⎨

⎩

As(e),e(t)
∑

ẽ∈δ–
s(e)

min{vẽρ ẽ(bẽ, t),μẽ} if s(e) /∈ Vin,

Gs(e)
in (t) if s(e) ∈ Vin,

and

ge
out(t) =

⎧
⎨

⎩
min{ge

in(t),μe} if qe(t) = 0,

μe if qe(t) > 0.

This deterministic model is well-defined if the initial densities and the inflow functions
are of bounded total variation, see [6]. Moreover, we can define a solution if the inflow
and initial densities are in L1 by using an extended solution operator Sμ, i.e. Sμ

stu is the
solution starting at time s with initial condition u = (q1

0, . . . , qN
0 ,ρ1

0 , . . . ,ρN
0 ) at time t ≥ s

and with capacities μ = (μ1, . . . ,μN ), see [4, 6]. This deterministic flow Sμ will determine
the deterministic evolution between the machine failures or capacity drops. As already
mentioned in the introduction, due to the missing data, we focus on the mathematical
description of the stochastic model in the following section.

2.2 Stochastic extension: load-dependent capacities
In the following, we introduce the stochastic production network model from [16]. We
assume that the capacities μe can take finitely many non-negative values μe(i) for i ∈
{1, . . . , Ce}, Ce ∈N and we introduce the variable r(t) = (r1(t), . . . , rN (t)) ∈ {1, . . . , C1}×· · ·×
{1, . . . , CN } determining the capacities used in the production network at time t. Combin-
ing all ingredients leads to deterministic dynamics

Φst : E → E,

(r0, q0,ρ0) �→ (
r(t), q(t),ρ(t)

)
,

with

E =
{

1, . . . , C1} × · · · × {
1, . . . , CN} ×R

N
≥0 × L1((a1, b1)

) × · · · × L1((aN , bN )
)
,

where

r(t) = r0,
(
q(t),ρ(t)

)
= Sμ(r0)

st (q0,ρ0).
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To incorporate random capacity drops in the production network, we follow the theory of
piecewise deterministic Markov processes, see e.g. [7, 19]. Since we have the deterministic
evolution between the jump times given by Φ , we only need to specify the intensity ψ at
which jumps occur and the distribution of the jumps η. To do so, we use rate functions λe

ij
describing the rate that processor e has a capacity change from μe(i) to μe(j) and assume

λe
ii =

Ce∑

j �=i

λe
ij.

That means, we assume for all y = (r, q,ρ) ∈ E and B ∈ σ (E)

ψ(t, y) =
N∑

e=1

λe
rere

(
t, (qe,ρe)

)
,

η(t, y, B) =
N∑

e=1

Ce∑

l �=re

λe
rel(t, (qe,ρe))

ψ(t, y)
ε(r1,...,re–1,l,re+1,...,rN ,q,ρ),

where εx is the Dirac measure with unit mass in x and

σ (E) = P
({

1, . . . , C1}) ⊗P
({

1, . . . , CN}) ⊗B
(
R

N
≥0

)

⊗ σ
(
L1((a1, b1)

)) ⊗ σ
(
L1((aN , bN )

))

is the σ -algebra on E. Here, P denotes the power set, B(RN≥0) the Borel σ -algebra on
R

N≥0 and σ (L1((ak , bk))) the Borel σ -algebra generated by the open sets induced by the L1-
norm. If the rate functions are continuous with respect to (t, y) and uniformly bounded,
then there exists a stochastic process Y = (Y (t), t ∈ [0, T]) ⊂ E on some probability space
(Ω ,F , P), which is piecewise deterministic between the jumps and follows the determin-
istic production network equations, see [16].

To construct sample paths of the stochastic process Y , we use a numerical scheme for
the deterministic evolution Φ and a thinning algorithm for the jump times simultaneously.
The approximation of the deterministic evolution consists of a left-sided Upwind scheme
for the densities ρe and the forward Euler method for the queue-length evolution qe. Let
Tn ≥ 0 be the time of the nth jump to the value of Yn ∈ E, then a thinning algorithm pro-
duces the next jump time Tn+1 and post-jump location Yn+1 as it is shown schematically
in Fig. 3.

Figure 3 Thinning algorithm
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For the description of the procedure we assume a uniform bound λ̄ on ψ . Starting
from Tn with the value Yn, we take an exponentially distributed time ξ1 with mean λ̄–1

and use the deterministic evolution to obtain the value ΦTn ,Tn+ξ1 Yn at time Tn + ξ1. With
an acceptance rejection method, we decide whether a jump is accepted with probability
Ψ (Tn+ξ1,ΦTn ,Tn+ξ1 Yn)

λ̄–1 . If a jump is accepted, the new state of the system Yn+1 is produced by
the kernel η. This procedure is repeated until the final time horizon is reached.

2.3 Stochastic extension: capacities as clusters
In the following, we study the scenario where the capacity (μe(t), t ≥ 0) at processor e
consists of Ne ∈ N individual capacities. To be more precisely, we assume that μe(t) can
be written in the form

μe(t) =
Ne∑

i=1

Xe
i (t),

where (Xe
i (t), t ≥ 0) is the capacity of cluster part i. This is important if the production

capacity depends on Ne workers that are randomly not available. We assume that every
part of the cluster can be on or off, i.e. Xe

i ∈ {0, 1}, and leads to capacity drops of the capacity
process μe. In the context of individuals, Xe

i (t) represents whether worker i is available for
work or not.

Figure 4 shows possible realized capacities in the case of the diamond network, cf. Fig. 2,
at time t1 and a later time t2. We note that the total capacities are not conserved, i.e. work-
ers are either available or not.

The next question is how we can incorporate these ideas into the setting of the model
presented in Sect. 2.1. The mathematical idea is to interpret every (Xe

i (t), t ≥ 0) as a contin-
uous time Markov Chain (CTMC) on a common probability space (Ω ,F , P) and that they
are independent of each other. The following lemma 2.1 provides the main tool to numer-
ically evaluate the workforce planning problem in sub Sect. 4.2. To simplify the notation,
we neglect the index e in the following.

Lemma 2.1 Fix N ∈ N and suppose we are given a family (X1(t), . . . , XN (t), t ≥ 0) of inde-
pendently identically distributed CTMCs on the probability space (Ω ,F , P) taking values

Figure 4 Worker allocation
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in {0, 1}. In addition, suppose we are given a Q-matrix

Q =

(
–λ0 λ0

λ1 –λ1

)

for λ0,λ1 > 0. The stochastic process defined by

X(t) =
N∑

i=1

Xi(t)

is a CTMC with Q-matrix satisfying

qjk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–(jλ1 + (N – j)λ0) if k = j,

(N – j)λ0 if k = j + 1,

jλ1 if k = j – 1,

0 else

for j, k = 0, . . . , N . Furthermore, we have

P
(
X(t) = j

)
=

(
N
j

)
P
(
X1(t) = 1

)jP
(
X1(t) = 0

)N–j. (3)

The proof can be found in the Appendix. Note that the proof consists of basically two
steps: first proving the Markov property and second using combinatorics to compute the
generator Q of the process.

We also have the following remark.

Remark 2.2 Equation (3) shows that X(t) is binomially distributed, i.e.

X(t) ∼ Bin
(
N , P

(
X1(t) = 1

))
.

The steady-state distribution is consequently

lim
t→∞ P

(
X(t) = j

)
=

(
N
j

)(
λ0

λ0 + λ1

)j(
λ1

λ0 + λ1

)N–j

, (4)

because of

lim
t→∞ P

(
X1(t) = 1

)
=

λ0

λ0 + λ1
.

The latter allows for a simple availability analysis of the capacities because the parame-
ters λ0 and λ1 are known from estimations. Equation (4) describes the long term probabil-
ities, which give an easy representation of the capacity one can expect in this production
unit. The expected capacity is E[X(∞)] = N λ0

λ0+λ1
, which is useful in practical applications

to identify bottlenecks in the production.
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Since the entries qij of the generator Q describe the transition rate from state i to j with
i �= j, we have

λe
ij
(
t,

(
qe,ρe)) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

jλe
1 + (Ne – j)λe

0 if j = i,

(Ne – j)λe
0 if j = i + 1,

jλe
1 if j = i – 1,

0 else

for i, j ∈ {1, . . . , Ne}.
This choice embeds this load-independent model into the load-dependent model by the

special choice of the rate functions λe
ij(t, (qe,ρe)) independent of t, qe and ρe.

3 Performance measures
As we have seen, the stochastic production network model introduced allows for random
capacities capturing load-dependent failure rates. Since the model is driven by a stochas-
tic process, there is a need for tailored evaluation tools, so-called performance measures,
if we are given a set of sample paths. This section is devoted to classical performance
measures for production models and performance measures based on risk measures mo-
tivated from the finance area. Performance and in particular risk measures are statistical
measures that can be used as predictors of investment risk and volatility in many applica-
tions. Even though such measures are mostly applied in finance, they can be also used to
evaluate production systems.

3.1 Classical performance measures
Considering sample paths of the production network at every point in time is too detailed
in most cases and aggregated quantities are of high interest. According to [15, 17], the
aggregated outflow until time t ≥ 0 of the complete network can be computed as

Gnet
out(t) =

∫ t

0

∑

v∈Vout

∑

e∈δ–
v

min
{

veρe(be, s
)
,μe(re(s)

)}
ds,

where Vout = {v ∈ V : δ+
v = ∅} are the nodes without a subsequent processor. We can also

define

qnet(t) =
∑

e∈A

∫ t

0
qe(s) ds,

as the cumulative sum of all queue-loads up to time t ≥ 0. Both quantities above are real-
valued random variables. Classical performance measures are for example the expectation

E
[
Gnet

out(t)
]
, E

[
qnet(t)

]
,

and variance

σ 2(Gnet
out(t)

)
, σ 2(qnet(t)

)

of these quantities. They only measure the outflow or the network queue loads and do not
include any information on the profit of the company.
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3.2 Risk measures in performance measures
If we consider the profit until time t as a random variable Π (t) (a functional of Y ), where
Y is a stochastic production network model, then we can include monetary aspects. We
could also use not risk-adjusted performance measures, as e.g. the expectation for the
random variable Π (t), to describe the performance of the production. However, it turns
out that they are not the best choice especially in the context of optimization, see Sect. 4.
The reason is that a high expected profit can incorporate a high risk that we intend to
measure in an appropriate manner. One possibility is the quantification of probability of
a bankruptcy, i.e.,

P
(
Π (t) < 0

)
,

which has different unit (probability) than the profit (monetary unit). One has to keep
in mind that this probability does not include any information about the needed surplus
to capture “bad” events. There, we can help us with the so-called Value at Risk and the
Average Value at Risk, see e.g. [2, 10, 27], which have been introduced in the context of
finance and insurance. They correspond to the class of monetary risk measures, which we
introduce in the following definition 3.1 taken from [10].

Definition 3.1 ((Coherent) risk measure) Let H be a linear space of bounded, real-valued
functions containing constants. The mapping � : H →R is called a monetary risk measure
if

1. for every X, X̃ ∈H with X ≤ X̃ , we have �(X) ≥ �(X̃) (Monotonicity)
2. for every X ∈H, m ∈R, it holds that ρ(X + m) = ρ(X) – m (Cash invariance)

and it is called a coherent monetary risk measure if additionally it holds that
3. for every λ ≥ 0, we have �(λX) = λ�(X) (Positive homogeneity)
4. for every X, X̃ ∈H, it follows that �(X + X̃) ≤ �(X) + �(X̃) (Subadditivity).

Property 1 of Definition 3.1 states that, if X is interpreted as the profit, the risk of a
less profitable company is higher. Assume that we have a risk-free surplus of m, then the
risk is reduced by m, see property 2. Property 3 induces a normalization, i.e. �(0) = 0 and
ensures an easy scaling of different currencies. Property 4 describes how aggregation leads
to a reduction of risk.

One very common risk measure is the Value at Risk (V@Rλ(X)). It is defined as

V@Rλ(X) = inf
{

m ∈ R : P(X + m < 0) ≤ λ
}

(5)

for some level λ ∈ (0, 1) and a real-valued random variable X on some probability space
(Ω ,F , P); see [10]. The Value at Risk is simply a quantile and cam be rewritten as

V@Rλ(X) = –q+
X(λ). (6)

with the upper quantile function

q+
X(t) = sup

{
x ∈ R : P(X < x) ≤ t

}
.
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One can show that V@Rλ is a monetary risk measure, which is positive homogeneous but
not subadditive. Since the profit of a production network will contain sums of individual
costs of machines, we can not guarantee that the Value at Risk incorporates risk diversi-
fication effects. One can easily construct a coherent risk measure from the Value at Risk,
which is the Average Value at Risk, and it is defined by

AV@Rλ(X) =
1
λ

∫ λ

0
V@Rγ (X) dγ .

From the computational point of view, we can estimate the Value at Risk (6) from a sample
of profit realizations by an estimation of the quantile function such as quantilea in
Matlab. This can again be used to compute the Average Value at Risk with, e.g. the Matlab
function integralb.

Remark 3.2 Following [10], AV@R can also be expressed as

AV@Rλ(X) =
1
λ

inf
t∈R

(
E

[
(t – X)+]

– λt
)

=
1
λ
E

[
(q – X)+]

– q,

where (z)+ = max{0, z} and q is a λ-quantile (e.g. q = q+
X(λ)) of X. This yields for continuous

distributed X an alternative approach from a computational point of view since solving
1
λ

inft∈R(E[(t – X)+] – λt) directly leads to the V@Rλ(X) and the AV@Rλ(X).

4 Computational results
In this section, we numerically investigate the performance measures, their similarities
and differences. First, we investigate the optimal routing problem and comment on dif-
ferent combinations of distribution rates in a diamond network with respect to the per-
formance measures. Second, we study the impact of cluster sizes, i.e. available workforce,
on the performance measures. The simulation results should help decision makers to un-
derstand risks, uncertainties and complexities. Therefore, all results are described and
interpreted in detail.

4.1 Distribution parameter planning in the load-dependent case
Let the topology of a production network be given as a diamond network, see Fig. 2, where
α1,α2 ∈ [0, 1] are the two distribution parameters, i.e., a percentage of α1 is fed from pro-
cessor one into queue two (A1,2(t) = α1), 1 – α1 from one to three (A1,3 = 1 – α1) and the
same for α2 from processor two to queue five and 1 – α2 to queue four.

As before in Sect. 3.2, we analyze the profit but here for different distribution rates α1

and α2. To do so, we adopt the profit functional, which is now given as

Π (t) =
∫ t

0

( ∑

v∈Vout

∑

e∈δ–
v

min
{

veρe(be, s
)
,μe(re(t)

)} · p(s) –
∑

e∈A
qe(s) · Ce

q(s)
)

ds. (7)

The price of the product is p(s) ≥ 0 and Ce
q(s) ≥ 0 is the storage cost at time s for storage

e ∈A.
We assume p(s) = 1 and Ce

q(s) = 0.1 for every e = 1, . . . , 7 and s ∈ [0, T]. The queue-
processor units all have a production velocity ve = 1 and a length of one, and we start with
an empty system at full capacity. The capacities are given by (ordered by states) μ1 ∈ {0, 3},
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μ2,μ3 ∈ {0, 1, 2}, μ4 ∈ {0, 1}, μ5 ∈ {0, 2}, μ6 ∈ {0, 1, 3}, and μ7 ∈ {0, 2, 3}. To include the
load-dependency we follow [16] and define the Utilization Ratio UR by

URe(re, qe,ρe) =
1

maxi{μe(i)}(be – ae)

∫ be

ae
min

{
μe(re(t)

)
, veρe(x, t)

}
dx,

and the Ratio of Work In Progress and the maximal amount of goods in the machine RWIP

as

RWIPe(re, qe,ρe) =
ve

maxi{μe(i)}(be – ae)

∫ be

ae
ρe(x, t) dx.

The rate functions of processors e ∈ {1, 4, 5} are then given by

λe
12

(
t, qe,ρe) = λrep,max,e –

(
λrep,max,e – λrep,min,e)RWIPe(1, qe,ρe),

λe
21

(
t, qe,ρe) = λdown,e URe(2, qe,ρe),

with λrep,max,e = 10, λrep,min,e = 4 and λdown,e = 1.
In the case of three states, i.e., processors 2, 3, 6 and 7, the rate functions read as

λe
13

(
t, qe,ρe) = λe

23
(
t, qe,ρe)

= λrep,max,e –
(
λrep,max,e – λrep,min,e)RWIPe(1, qe,ρe),

λe
21

(
t, qe,ρe) = λdown,e UR

(
2, qe,ρe),

λe
31

(
t, qe,ρe) = λe

32
(
t, qe,ρe) = λdown,e URe(3, qe,ρe)

with λrep,max,e = 10, λrep,min,e = 4 and λdown,e = 2. This means we consider two different types
of processors with two or three capacity states, identical repair rates but different break-
down rates. We cannot state an explicit stationary expected capacity as in Sect. 4.2 and
simulations are needed to determine which combination (α1,α2) performs in a “optimal”
way.

In Fig. 6(a)–(b), the sample mean and standard deviation of the profit depending on
different choices of α1 and α2 are shown, where α1,α2 ∈ {0, 0.1, . . . , 0.9, 1} are evaluated. In
Figs. 6(c) and 5(a)–(b), the bankruptcy probability and both the Value at Risk and Average
Value at Risk, respectively, are drawn for different combinations of α1 and α2. The inflow
into the network is constant and given by 1.5, and the time horizon is chosen to be T = 10.

We see a strong influence of the distribution parameters on the profit. The vertical black
line describes the allocation of (α1,α2), which is the best choice for the corresponding eval-
uation of the profit. In the case of the sample mean, the choice (α1,α2) = (0.4, 1) leads to
the highest value of 6.2087; see Table 1. In contrast, the sample standard deviation is small
for the choice (α1,α2) = (0.9, 0), with a value of 1.9261. The lowest bankruptcy probability
follows from the choice (0.5, 0.7), which is close to the best choices of the Value at Risk
(0.6, 0.9) and the Average Value at Risk (0.5, 0.8) in Fig. 5. Regarding the different eval-
uations of the profit sample, the choice of combination (α1,α2) strongly depends on the
choice of the evaluation criterion, but there is a tendency to equally distribute at node
two and more into processor five than in processor four at node three. Feeding more into
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Figure 5 Value and Average Value at Risk with level λ = 0.1 for 1000 samples

Figure 6 Sample mean, standard deviation and bankruptcy probability of profit for 1000 samples
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Table 1 Comparison of the different profit evaluations

(0.4, 1) (0.9, 0) (0.5, 0.7) (0.6, 0.9) (0.5, 0.8)

Π (T ) 6.2087 1.9018 5.9841 6.1532 6.1820
σ (Π (T )) 2.2415 1.9261 2.1142 2.1117 2.0602
P(Π (T ) < 0) 0.0210 0.1890 0.0120 0.0140 0.0120
V@R0.1(Π (T )) –3.0895 0.8949 –2.9776 –3.2336 –3.1459
AV@R0.1(Π (T )) –1.3008 1.6910 –1.4979 –1.5509 –1.6523

Figure 7 Serial network with two processors

processor five can also be motivated by the higher capacity compared to the capacity of
processor four. The values of the mean capacity, standard deviation, bankruptcy proba-
bility and (Average) Value at Risk for all the best choices are listed in Table 1. There, the
Average Value at Risk performs well because all other evaluation criteria are not worse in
this case, specifically, because the Average Value at Risk is a coherent risk measure from
the theory of risk measures and is thus a reasonable result.

Obviously, the bankruptcy probability is a worse measure in optimizing (α1,α2) for this
example since the relevant region is very flat and disturbed by the errors from the Monte
Carlo simulation. In high contrast, both, the Value at Risk and Average Value at Risk form
a nice shaped measure and neglecting the Monte Carlo errors it seems to be convex as
well.

4.2 Study of cluster sizes and workforce planning
We analyze the stochastic production network model with two arcs, see Fig. 7, where ca-
pacities are given as in Sect. 2.3 and we define the profit Π (t) as the cumulative revenue
reduced by storage and cluster-size costs up to time t ≥ 0.

In formulas, this reads as

Π (t) =
∫ t

0

( ∑

v∈Vout

∑

e∈δ–
v

min
{

veρe(be, s
)
,μe(re(t)

)} · p(s)

–
∑

e∈A

(
qe(s) · Ce

q(s) + Ne · Ce
N (s)

))
ds,

where we denote with p(s) ≥ 0 the price of the product, Ce
q(s) ≥ 0 and Ce

N (s) ≥ 0 are the
storage and cluster size costs, respectively, at time s. Typical examples for the cluster size
cost are maintenance costs or salaries. If � is a monetary measure of the risk, we can in-
terpret �(Π (T)) as the risk of the company of the aggregated loss and gains up to time T .

In the following, we study an example and consider a production network model in
the form of a chain of two processors. The capacities of the processors satisfy μe(t) ∈
{0, . . . , Ne} for given cluster sizes N1, N2 ∈ N. We further assume that the times between
failures and the repair times of each part of a cluster are exponentially distributed with
mean MTBF1 = 80, MTBF2 = 50 and MRT1 = 10, MRT2 = 20. This results in the rates

λ1
0 =

1
10

, λ1
1 =

1
80

, λ2
0 =

1
20

, λ2
1 =

1
50

.
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We can compute the expected capacities in steady state as

E
[
μe(∞)

]
=

Ne∑

n=0

n
(

Ne

n

)(
λe

0
λe

0 + λe
1

)n(
λe

1
λe

0 + λe
1

)Ne–n

= Ne λe
0

λe
0 + λe

1
,

which implies

E
[
μ1(∞)

]
= N1 8

9
, E

[
μ2(∞)

]
= N2 5

7
,

and means that the expected capacity of the second processor for N1 = N2 is lower than
the capacity of the first one. We assume a processing velocity ve = 1 for both processors, a
time step �t = 1 and a time horizon of T = 365. The length of each processor is one, and to
satisfy the Courant–Friedrichs–Lewy (CFL) stability condition, we choose a spatial step
size of �x = 1. Given that G1

in(t) = 10 is a constant inflow of ten parts per unit time, we start
with an empty production. The only missing parameters are the cluster sizes N1 and N2

and our goal is to analyze how the profit Π (T) changes if we choose different combinations
of cluster sizes. To evaluate the profit, we assume storage costs C1

q = C2
q = 0.01, cluster size

costs C1
N = 4, C2

N = 6 and a price p = 10.02.
The following simulation results are based on M = 104 Monte Carlo samples. Figure 8

contains the sampled values of the expected profit (a), the standard deviation (b) and
bankruptcy probability (c).

In this example, the expected profit strongly depends on the cluster sizes, i.e. there are
few combinations that lead to a positive expected profit. The highest expected profit is
achieved with the choice N1 = 10 and N2 = 12 with a profit of 2.3535 · 103, as Table 2
states.

With respect to the standard deviation, we obtain the combination N1 = N2 = 15 having
the lowest standard deviation of 0.6733 · 103; see Table 2. This is reasonable because in
this case, the production is less affected by capacity drops due to the large cluster sizes.

The bankruptcy probability in Fig. 8(c) shows a tight region in which the probability of
going bankrupt is low. The combination with N1 = 10 and N2 = 12 leads to a bankruptcy
probability of 0.0804 and the same combination as the expected profit.

For a level of λ = 0.1, Fig. 9 contains the Value and Average Value at Risk for this level.
The cluster sizes N1 = 10 and N2 = 12 lead to a Value at Risk of –0.2283 · 103. This can
be interpreted as follows: even if we have debts of –0.2283 · 103, the probability to face
bankruptcy at T = 365 is lower than 0.1. The more pessimistic risk measure, Average Value
at Risk, leads to a best choice N1 = 8 and N2 = 10 with a AV@R0.1(Π (T)) of 0.6255 · 103,
i.e., we should have a surplus of 0.6255 · 103 for these cluster sizes.

In the case of a level of λ = 0.01, the combination N1 = 10 and N2 = 13 yields a
V@R0.01(Π (T)) of 1.5683 · 103; see Fig. 10(a) and Table 2. The combination N1 = 7 and
N2 = 9 implies an AV@R0.01(Π (T)) of 2.0632 · 103; see Fig. 10(b).

All introduced performance measure evaluations in Table 2 are given for reasonable
cluster size choices. Obviously, the best choice for the standard deviation leads to bad
performance in all the other performance measures. The allocation N1 = 10 and N2 = 12
implies the best solution in terms of expectation, bankruptcy probability and Value at
Risk with level 0.1. The Value and Average Value at Risk seem to work quite well here
and give information about the surplus one has to hold to capture bad events and avoid
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Figure 8 Profit evaluation for different cluster sizes

Table 2 Comparison of the different profit evaluations for (N1,N2)

(10, 12) (15, 15) (10, 13) (7, 9) (8, 10)

Π [103] 2.3535 –4.0108 1.7406 1.4955 1.8488
σ (Π ) [103] 1.6026 0.6733 1.2503 1.1219 1.2804
P(Π < 0) 0.0804 1.0000 0.0883 0.0966 0.0831
V@R0.1(Π ) [103] –0.2283 4.8542 –0.0995 –0.0271 –0.1818
AV@R0.1(Π ) [103] 0.7212 5.6145 0.6568 0.6682 0.6255
V@R0.01(Π ) [103] 1.8642 6.5899 1.5683 1.5774 1.6160
AV@R0.01(Π ) [103] 2.6565 7.2945 2.1790 2.0632 2.3147

a bankruptcy with a high probability (given by 1 – λ). One has to be careful with the in-
terpretation here. The profit is defined as the cumulative difference of earnings and costs
and does not imply detailed information at every time between zero and T .

From the point of optimization, the shape of the Value at Risk and Average Value at
Risk are the best, since starting from any combination we are directed into the “valley” of
good combinations. In the case of the bankruptcy probability we have two disadvantages,
namely totally flat regions and high jumps in the values.
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Figure 9 Value and Average Value at Risk for different cluster sizes and level λ = 0.1

Figure 10 Value and Average Value at Risk for different cluster sizes and level λ = 0.01

5 Conclusions
We have analyzed performance measures for a stochastic production network model. It
turned out that different performance measures might lead to totally different results and
the choice of the appropriate measure should be a crucial point in the development of an
optimization framework. In our examples, the measures Value at Risk and Average Value
at Risk always lead to reasonable results and a suitable curvature in the set of feasible so-
lutions. In particular, from a practical point of view, a major benefit of our approach is a
comprehensive numerical analysis of a fully time-dependent stochastic production model
that keeps track of random capacity reductions. The combined study with risk measures
also allows for a performance evaluation in a simulation environment. So far, the model
is limited to the consideration of homogeneous products but could be extended to multi-
commodity flows in a straightforward way. Furthermore, the well-known buffer allocation
problem [8, 22, 28] used for the design of manufacturing systems can be analyzed within
this framework to find optimal buffer sizes.

Therefore, future work will deal with the formulation of rigorous optimization problems
for the stochastic production network model with respect to relevant performance mea-
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sures. Mathematically, a focus will be the study of the quality of solutions and the speed
of convergence to an optimum. We also hope to get more insight in the decision making
for more realistic flow lines.

Appendix: Proof of Lemma 2.1

Proof The proof consists of two steps. First, we prove the Markov property of (X(t), t ≥ 0),
and we compute the Q-matrix in the second part. Clearly, the stochastic process (X(t), t ≥
0) takes only values in the finite, discrete space EX := {0, . . . , N}, which together with the
σ -algebra EX = P(EX) builds a measurable space. We prove the Markov property with
Dynkin’s criterion [9, theorem 10.13] and follow the ideas of [3, problem 4.14]. We have N
CTMCs with state space {0, 1} given, and we construct the N-dimensional Markov process
(Y (t), t ≥ 0) with Y (t) = (X1(t), . . . , XN (t)) on the product space (ΩN ,AN , PN ). This process
takes values in the measurable space (EY ,EY ) = ({0, 1}N ,P({0, 1}N )), and we obtain the
process (X(t), t ≥ 0) defined by the measurable surjective mapping

ψ : EY → EX , x �→
N∑

i=1

xi

as X(t) = ψ(Y (t)). Let (Ut , t ≥ 0) be the semigroup of Markovian kernels given by (Y (t), t ≥
0), i.e.,

Ut(x, B) = PN(
Y (t + s) ∈ B|Y (s) = x

)

for every x ∈ EY , s, t ≥ 0 and B ∈ EY . If we can show that for every x, x̃ ∈ EY with ψ(x) =
ψ(x̃) the equality

Ut
(
x,ψ–1(Γ )

)
= Ut

(
x̃,ψ–1(Γ )

)

for every t ≥ 0 and Γ ∈ EX holds (Dynkin’s criterion), then we know that the stochastic
process (X(t), t ≥ 0) is a Markov process. From x ∈ ψ–1({m}), it follows that xσ ∈ ψ–1({m})
for every m ∈ EX and every permutation σ because of the structure of ψ . Therefore, we
can compute

Ut
(
x,ψ–1(Γ )

)

=
∑

z∈ψ–1(Γ )

PN(
Y (t) = z|Y (0) = x

)

=
∑

z∈ψ–1(Γ )

N∏

i=1

P
(
Xi(t) = zi|Xi(0) = xi

)

=
∑

z∈ψ–1(Γ )

N∏

i=1

P
(
X1(t) = zi|X1(0) = xi

)

=
∑

z∈ψ–1(Γ )

N∏

i=1

P
(
X1(t) = zσ (i)|X1(0) = xσ (i)

)
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=
∑

zσ ∈ψ–1(Γ )

N∏

i=1

P
(
Xi(t) = zσ (i)|Xi(0) = yi

)

=
∑

zσ ∈ψ–1(Γ )

PN(
Y (t) = zσ |Y (0) = y

)

= Ut
(
y,ψ–1(Γ )

)

for a permutation such that xσ = y holds. Hence, we have the Markov property of (X(t), t ≥
0) by Dynkin’s criterion, and it is a CTMC. We calculate the transition probabilities of the
stochastic process (X(t), t ≥ 0) to obtain theQ-matrix. First, we know for every i = 1, . . . , N
and for every l, m ∈ {0, 1} that the transition probability fulfills

P
(
Xi(t + �t) = m|Xi(t) = l

)
= 1l(m)(1 – �tλl) + 11–l(m)�tλl + o(�t) (8)

in the limit �t → 0; see [18, pp. 28].
We choose k, j ∈ {0, . . . , N}, and we set C = EN in the following. Then, we can write

P
(
X(t + �t) = k, X(t) = j

)

=
∑

α∈C|α|=k

∑

β∈C
|β|=j

P
(
X1(t + �t) = α1, . . . , XN (t + �t) = αN , X1(t) = β1, . . . , XN (t) = βN

)

=
∑

α∈C|α|=k

∑

β∈C
|β|=j

N∏

i=1

P
(
Xi(t + �t) = αi|Xi(t) = βi

)
P
(
Xi(t) = βi

)

using the independence of the stochastic processes and the multi-index notation

|α| =
N∑

i=1

αi.

At this point, we can use the transition probability (8) and merge all terms of order o(�t).
This yields

P
(
X(t + �t) = k, X(t) = j

)

=
∑

α∈C|α|=k

∑

β∈C
|β|=j

( N∏

i=1

1βi (αi)(1 – �tλβi )P
(
Xi(t) = βi

)
)

(9)

+
∑

α∈C|α|=k

∑

β∈C
|β|=j

( N∑

l=1

11–βl (αl)�tλβl P
(
Xl(t) = βl

) N∏

i=1
i�=l

1βi (αi)(1 – �tλβi )P
(
Xi(t) = βi

)
)

(10)

+ o(�t).

To simplify the computation, we analyze both summands in the last equation separately,
and we start with the first one (9). The product of the indicator function implies α = β ,
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and we put higher orders of �t into o(�t) again. By doing this and observing that k has to
equal j, we see

∑

α∈C|α|=k

∑

β∈C
|β|=j

( N∏

i=1

1βi (αi)(1 – �tλβi )P
(
Xi(t) = βi

)
)

= 1j(k)

(
∑

β∈C
|β|=j

P
(
Xi(t) = βi

)
(

1 – �t
N∑

l=1

λβl

))

+ o(�t)

= 1j(k)
(
1 – �t

(
jλ1 + (N – j)λ0

))
P
(
X(t) = j

)
+ o(�t).

The last equality follows from

N∑

l=1

λβl =
(
jλ1 + (N – j)λ0

)

since j entries of β are one and all the others are zero. Now, we analyze the second sum-
mand (10), which we simplify by merging terms to o(�t). We distinguish two cases, i.e.,
the case k = j + 1 and the case k = j – 1, since all remaining cases are impossible. In detail,
if, e.g., k = j + 2, then α has two entries more with value one, which implies that α and β

are different in at least two entries. Hence, the product in the second summand is zero.
We have

∑

α∈C|α|=k

∑

β∈C
|β|=j

N∑

l=1

(

11–βl (αl)�tλβl P
(
Xl(t) = βl

) N∏

i=1
i�=l

1βi (αi)(1 – �tλβi )P
(
Xi(t) = βi

)
)

= �t
N∑

l=1

∑

α∈C|α|=k

∑

β∈C
|β|=j

(

11–βl (αl)λβl P
(
Xl(t) = βl

) N∏

i=1
i�=l

1βi (αi)P
(
Xi(t) = βi

)
)

+ o(�t)

= 1j+1(k)�tλ0

N∑

l=1

∑

β∈C
|β|=j
βl=0

P
(
X1(t) = 1

)jP
(
X1(t) = 0

)N–j

+ 1j–1(k)�tλ1

N∑

l=1

∑

β∈C
|β|=j
βl=1

P
(
X1(t) = 1

)jP
(
X1(t) = 0

)N–j + o(�t)

by using that (Xi(t), i = 1, . . . , N) are iid. We easily count the remaining sums with combi-
natorics, i.e.,

N∑

l=1

∑

β∈C
|β|=j
βl=0

1 = N ·
(

N – 1
j

)
= (N – j) ·

(
N
j

)
,
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N∑

l=1

∑

β∈C
|β|=j
βl=1

1 = N ·
(

N – 1
j – 1

)
= j ·

(
N
j

)

and observe that

P
(
X(t) = j

)
=

(
N
j

)
P
(
X1(t) = 1

)jP
(
X1(t) = 0

)N–j.

Summarizing all computations yields the transition probability

P
(
X(t + �t) = k|X(t) = j

)
= 1j(k)

(
1 – �t

(
jλ1 + (N – j)λ0

))

+ 1j+1(k)�t(N – j)λ0

+ 1j–1(k)�tjλ1 + o(�t)

as �t → 0 and we conclude the generator of (X(t), t ≥ 0) as the matrix Q from the state-
ment of this lemma. �
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