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employed in [4]. A comparative theoretical and experimental study of a cellulose ac-
etate/acetone dry spinning system was presented in [17]. The works of [8, 9] extended
the models from viscous to viscoelastic material behavior. In [19] we recently developed a
dimensionally reduced “ber model which consists of one-dimensional equations for tan-
gential “ber velocity and stress and two-dimensional advection-di�usion equations cov-
ering the cross-sectional variations of polymer mass fraction and “ber temperature. We
extended this uni-axial “ber model to curved “bers utilizing the theory of Cosserat rods
in [20]. Due to the dimensional reduction, certain physical phenomena are certainly not
shown by the surrogates. With our model, a description of the shark skin formation is for
example not possible due to the neglect of radial velocity information, but the essential ef-
fect of solvent evaporation is correctly covered. In comparison to the referential solution
of a three-dimensional model, the results are convincing, providing a good approxima-
tion, while drastically reducing the computational time, cf. [19]. The numerical solution
framework proposed in [19] allows the incorporation of mutual “ber-air interaction in a
two-way coupling and, hence, makes the simulation of industrial dry spinning feasible. The
simulation results for a cellulose acetate/acetone dry spinning setup stand in accordance
to the data in [17]. In view of process design and optimization of complex industrial setups
with multiple hundred to more than one thousand “bers spun simultaneously, however,
the numerical treatment is still too time-consuming. When solving the coupled one-two-
dimensional problem iteratively, it turns out that the computation of the radial pro“les of
polymer mass fraction and “ber temperature as well as their associated cross-sectionally
averaged values builds the bottleneck. In this paper, we address this computational chal-
lenge. We develop new algorithmic strategies that represent signi“cant improvements on
the existing state of the art. Based on a generalized problem description we give details
for an e�cient implementation of the underlying routines and demonstrate their perfor-
mance for an industrial example.

The scienti“c novelty of this paper is the algorithmic; the model and the industrial exam-
ple are taken from [19]. With regard to a closed presentation and independent readability,
the paper is structured as follows. For a better understanding of the underlying multiscale-
multiphase problem we start with the three-dimensional “ber description based on a mix-
ture model ansatz in Sect.2. The dimensionally reduced one-two-dimensional “ber model
according to [19] is given in Sect.3. The core of the paper is Sect.4, where we intro-
duce new numerical strategies for the computation of the two-dimensional pro“les and
averaged quantities. Moreover, based on a general problem formulation we describe the
coupling concept for the solution of the underlying one-two-dimensional problem and
give details for its implementation in view of e�cient simulations. In Sect.5 we apply
the framework to the industrial dry spinning of a cellulose acetate-acetone mixture in air.
Investigating the computational performance, we discuss the improvements of our devel-
oped numerical schemes compared to [19].

2 Underlying three-dimensional multiphase-multiscale problem
For a better understanding of the dimensionally reduced one-two-dimensional “ber
model given in [19], we describe the underlying (Euler-)stationary three-dimensional dry
spinning model for a single viscous uni-axial “ber in a surrounding air”ow in this sec-
tion. Since in dry spinning processes no relevant transient e�ects occur, we restrict to a
steady consideration. LetD ⊂ R

3 be the a priori unknown “ber domain whose bound-
ary ∂D = Γin ∪ Γfr ∪ Γout consists of the “xed inlet at the nozzleΓin , the free lateral “ber
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surfaceΓfr and the outletΓout. Proceeding from balance laws for mass, momentum and
energy for the two phasesi in D, i ∈ {p,d} (polymer and diluent) [13], we employ the mix-

ture model ansatz of [11] to reduce the balances for momentum and energy for the single
phases to balances for the mixture. The quantities for the single phases are indicated by

the respective indexi, i ∈ {p,d}. Note that throughout this paper we use the terms •diluent•
and •solvent• synonymously.

Let ρi [kg/m3] and vi [m/s] be the partial densities and velocities for the polymer and
diluent phases as well ashi [J/kg] the partial speci“c enthalpies of polymer and diluent

in the mixture, i ∈ {p,d}. Assuming an Eulerian (spatial) description, the stationary mass,

momentum and energy balances for the two phases are modeled as

∇ · (ρivi) = 0, i ∈ {p,d}, (1a)

∇ · (ρivi ⊗ vi) = ∇ · Σi
T + fi, i ∈ {p,d}, (1b)

∇ · (ρhivi) = ∇ · (Ci∇T), i ∈ {p,d}, (1c)

with respective stress tensorsΣi [Pa] and body force densitiesfi [N/m 3] acting on phasei.
In the energy balances (1c), ρ [kg/m3] denotes the density of the mixture and the right
hand sides represent the energy transport by heat conduction at mixture temperatureT
[K] and thermal conductivitiesCi [W/(m K)]. E�ects of inner friction, convective terms
due to pressure ”uctuations as well as energy transfer caused by body forces are neglected.

The mixture model ansatz according to [11] treats the two phases as interpenetrable
continua. Its idea is to consider only one momentum equation as sum of the phase bal-

ances (1b) and only one energy balance equation as sum of (1c). The mixture densityρ,
mixture stress tensorΣ , total body forcef , mixture speci“c enthalpyh as well as the mix-

ture thermal conductivity C are the sums of the quantities of the single phases, i.e.,

k = kp + kd, k ∈ {ρ,Σ ,f,h,C}.

For the mixture we assume ideality, i.e., the volume does not change under mixing and the

enthalpy of mixing is zero. This leads to the relations

1 =
ρp

ρ0
p

+
ρd

ρ0
d

, ρhi = ρih0
i , i ∈ {p,d},

whereρ0
i , h0

i denote the material densities and speci“c enthalpies of pure polymer and

solvent. These material parameters might be speci“ed depending on the temperature. To-
gether with the de“nition of the mixture speci“c enthalpyh the relation for the enthalpies

results in the more common expression

h =
ρp

ρ
h0

p +
ρd

ρ
h0

d.

The temperature derivatives ofh0
p, h0

d and h are in particular the speci“c heat capacities

q0
p, q0

d andq [J/(kg K)] for constant pressure, yielding

q =
ρp

ρ
q0

p +
ρd

ρ
q0

d.
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Here, we used the fact that the mass fractions of the single phases do not explicitly de-
pend on the temperature, i.e.,∂T (ρi/ρ) = 0, i ∈ {p,d}. For the stress tensorΣ we as-
sume incompressibility and a Newtonian ”uid with dynamic mixture viscosityμ [Pa s],
i.e.,Σ = …pI + μ(∇v + (∇v)T) with mixture pressurep [Pa], mixture velocityv [m/s] and
I ∈ R

3×3 denoting the identity matrix. The de“nition of the mixture velocity v requires a
special treatment: Since the intended consideration of only one momentum balance does
not close our model, we have to employ constitutive relations for the di�erences between
the phase velocities and the mixture velocity. In our dry spinning scenario we consider the
polymer phase as dominating phase and the diluent phase as secondary phase. Therefore,
we “x the polymer velocity as mixture velocity, i.e.,v = vp. Then, only one constitutive re-
lation for the di�erence between the mixture velocity and the diluent velocityvpd = v …vd

is needed. We use Fick•s law in a version, which is linear with respect to the diluent mass
fraction ρd/ρ, namelyρdvpd = ρD∇(ρd/ρ), with D [m2/s] denoting the di�usion coe�-
cient of the diluent in the polymer. This formulation is appropriate to obtain an e�ciently
evaluable linear advection-di�usion equation for the polymer mass fraction in the dimen-
sionally reduced “ber model (cf. Sect.3). Employingv = vp and Fick•s law the mass balances
for polymer and diluent (1a) become

∇ · (ρpv) = 0, ∇ · (ρdv) …∇ ·
(

ρD∇
(

ρd

ρ

))
= 0.

Moreover, summing up the momentum phase balances (1b) and neglecting di�usive parts
in the stresses yields the mixture momentum balance

∇ · (ρv ⊗ v) …∇ ·
(

ρD
(

v ⊗ ∇
(

ρd

ρ

)
+ ∇

(
ρd

ρ

)
⊗ v

))
= ∇ · ΣT + f.

Analogously using Fick•s law and the phase balances (1c) we obtain the total energy balance
for the mixture

∇ · (ρhv) …∇ ·
(

h0
dρD∇

(
ρd

ρ

))
= ∇ · (C∇T).

Introducing appropriate boundary conditions, the stationary free boundary value prob-
lem (BVP) for the “ber unknownsρp, p, v, T andD is given by

System 1 (Three-dimensional free BVP)Balance laws in D:

∇ · (ρpv) = 0,

∇ · (ρdv) = ∇ ·
(

ρD∇
(

ρd

ρ

))
,

∇ · (ρv ⊗ v) …∇ ·
(

ρD
(

v ⊗ ∇
(

ρd

ρ

)
+ ∇

(
ρd

ρ

)
⊗ v

))
= ∇ · ΣT + f,

∇ · (ρhv) …∇ ·
(

h0
dρD∇

(
ρd

ρ

))
= ∇ · (C∇T).

Kinematic, dynamic, mass and heat flux respective boundary conditions on Γfr :

v · n = 0,
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Σ · n = f�,

…ρD∇
(

ρd

ρ

)
· n = jc, jc = γ

(
ρd

ρ
…

ρd,�

��

)
,

…C∇T · n = jT + jc
(
δ …h0

d
)
, jT = α(T …T�).

Inlet boundary conditions on Γin :

v = vin , ρd = ρd,in, T = Tin .

Outlet boundary condition on Γout:

v = vout.

Constitutive laws:

1 =
ρp

ρ0
p

+
ρd

ρ0
d

, h =
ρp

ρ
h0

p +
ρd

ρ
h0

d, Σ = …pI + μ
(∇v + (∇v)T)

.

Here, we consider body forces due to gravity, i.e.,f = ρg, as well as surface forcesf� [Pa]

due to the surrounding air”ow. The geometry is speci“ed via the kinematic boundary con-

dition on Γfr with unit outer normal vector n. At the lateral “ber surface the diluent density

has a jump due to the solvent evaporation, moreover, it changes rapidly in the boundary

layer that the surrounding air forms around the “ber. The diluent mass ”uxjc [kg/(m2s)]

in the aerodynamic boundary layer can be modeled by the di�erence of the diluent den-

sity in the air at the “ber surfaceς� [kg/m3] and away from the “berρd,� [kg/m3] with

convective mass transfer coe�cientβ [m/s], i.e., jc = β(ς� …ρd,�). Let c = ρp/ρ = 1 …ρd/ρ

be the polymer mass fraction, then we particularly use a formulation forjc in terms of the

mass fraction associated transfer coe�cientγ = β �� [kg/(m2s)] with ��= ς�ρ/ρd [kg/m3]

in System1. The temperature is continuous at the “ber surface, whereas the heat ”ux has

a jump because of the heat exchange in the air due to the solvent evaporation with evap-

oration enthalpyδ [J/kg] of the diluent. In the aerodynamic boundary layer the heat ”ux

jT [W/m 2] is described„analogously to the mass ”ux„by the di�erence of the temper-

ature at the “ber surface and away from the “berT� [K] with heat transfer coe�cient α

[W/(m 2K)]. The parametersδ andς� might be functions ofc andT , whereas the transfer

coe�cients α andβ depend on the state of the surrounding air”ow and especially on the

relative velocity between “ber and air”ow. In System1the surrounding air”ow is assumed

to be known in the sense that the quantitiesf�, ρd,� and T� as well as the air”ow depen-

dencies ofα andβ are given for each point of the “ber surface. Moreover, the parameters

D, C andμ might depend on the mass fractionc and temperatureT with suitable models

assumed to be available.

Remark 1 (Mass transfer) The used formulation of the diluent mass transferjc is moti-

vated from the fact that at the “ber surface the diluent density in the air is mainly linearly

proportional to the diluent density in the “ber, i.e.,ς� ∼ ρd. Settingς� = (ρd/ρ) �� sepa-

rates the linear part from the remainder��. The mass transfer is principally driven from

the linear part in terms of a Robin-type boundary condition, whereas the remainder��
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is incorporated in the transfer coe�cient γ = β ��. This splitting might allow a di�er-
ent treatment of the terms, which becomes essentially for our numerical treatment of the
problem.

3 Reduced �ber dry spinningmodel
Due to the complexity of the three-dimensional problem (System1) that prevents the sim-
ulations of industrial dry spinning setups, we proposed a dimensionally reduced model in
[19] that is of good approximation quality and e�ciently evaluable. It combines the rel-
evant two-dimensional aspects (radial pro“les for polymer mass fractionc and tempera-
ture T), that are essential due to the evaporation of solvent [14, 15], with one-dimensional
cross-sectionally averaged balances for tangential “ber velocityu and stressσ . In dimen-
sionless form the model foru, σ , c, T is given by

System 2 (One-two-dimensional BVP)Cross-sectionally averaged balance laws, s ∈ (0, 1):

L…1∂su = Re
1

3〈μ(c,T)〉R2
σ ,

L…1∂sσ = Re
Q
c̄

1
3〈μ(c,T)〉R2

σ …
1

Fr2
Q
c̄

1
u

…fair,

(2a)

with boundary conditions at inlet s = 0 and outlet s = 1:

u(0) = uin , u(1) = Dr uout.

Radial equations, (r,s) ∈ (0, 1)2:

L…1u∂sc …
1

εPec

c̄D(c̄,T̄)
R2r

∂r(r∂rc) = 0,

L…1ρ(c̄,T̄)q(c̄,T̄)u∂sT …
1

εPeT

C(c̄,T̄)
R2r

∂r(r∂rT) = 0,

(2b)

with boundary conditions at inlet s = 0, fiber surface r = 1 and symmetry boundary r = 0:

c|s=0 = cin , ∂rc|r=0 = 0,

1
Pec

ρ(c̄,T̄)D(c̄,T̄)
R

∂rc|r=1 = Stcjc(c,T)|r=1,

T |s=0 = Tin , ∂rT |r=1 = 0,

…
1

PeT

C(c̄,T̄)
R

∂rT |r=1 =
(
StT jT (T) + Stcjc(c,T)

(
δ(T) …h0

d(T)
))∣∣

r=1,

jc(c,T) = …γ (c,T)
(
c …cref(c,T)

)
, jT (T) = α(T …T�).

Constitutive laws and geometric relation:

ρ…1(c,T) = c
(
ρ0

p
)…1

(T) + (1 …c)
(
ρ0

d
)…1

(T), q0
d(T) = ∂T h0

d(T),

q(c,T) = cq0
p(T) + (1 …c)q0

d(T), R(s) =

√
Q

π(c̄ρ(c̄,T̄)u)|s
.
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Abbreviations:

c̄ =
1

πR2
〈c〉R2, T̄ =

1
πR2

〈T〉R2, 〈y〉R2(s) = 2πR2(s)
∫ 1

0
y(r,s)r dr,

Q = cinρinuinR2
inπ .

The one-dimensional equations for the tangential “ber velocityu and stressσ result

from averaging the Newtonian stress tensorΣ and the momentum balance in System1

over circular “ber cross-sections. The two-dimensional advection-di�usion equations for

the polymer mass fractionc and temperatureT , which reveal the radial e�ects that are

essential due to evaporation, are obtained from the diluent mass and energy balance in

System1 by the assumption of radial symmetry and by linearization around the cross-

sectional averaged polymer mass fractionc̄ and temperatureT̄ . Moreover, averaging the

polymer mass balance in System1 over the “ber cross-sections yields the constant poly-

mer mass ”uxQ = c̄ρ(c̄,T̄)uR2π = cinρ(cin,Tin)uinR2
inπ . This means we do not face a free

boundary value problem anymore, but can conclude the “ber radiusR from the boundary

conditions at the inlet. For further details see [19].

Remark 2 (Non-dimensionalization and scaling) System2 is formulated with respect

to dimensionless quantitiesy that have been scaled onto the space domain (0,1) (one-

dimensional quantities) and (0,1)2 (two-dimensional quantities), respectively. The non-

dimensionalization and scaling are done in separate steps. First, dimensionless quantities

are introduced as

ỹ(s̃) = y̆(s0s̃)/y0, ỹ(r̃, s̃) = y̆(d0r̃,s0s̃)/y0

for any scalar- or vector-valued dimensionful quantity̆y and corresponding reference

value y0. Due to technical reasons we use slightly di�erent scales compared to [19],

for the reference values and resulting dimensionless numbers see Table1. After non-

dimensionalization the equations are considered on the non-dimensional space domain

Table 1 Overview over composite reference values used for non-dimensionalization of the uni-axial
“ber dry spinning model and the resulting dimensionless numbers. Here, the scales�M,0,v0, r0,d0,
μ0,q0,T0,α0,γ0,C0,D0,uout,0,ρ�,0,p�,0,q�,0,ν�,0,λ�,0,Dd,�,0 are assumed to be given from the
considered setup

Composite reference values
Description Formula Unit

Length scale s0 = r0 m
Fiber length L0 = r0 m
Cross-sectional radius R0 = d0 m
Mass density ρ0 = �M,0/d2

0 kg/m3

Scalar velocity u0 = v0 m/s
Stress σ0 = �M,0v2

0 N
Outer force f0 = �M,0v2

0/r0 N/m
Enthalpy h0 = q0T0 J/kg
Evaporation enthalpy δ0 = h0 J/kg
Mass transfer coe�cient β0 = γ0/ρ�,0 m/s
Air temperature T�,0 = T0 K
Air velocity v�,0 = v0 m/s

Dimensionless numbers
Description Formula

Slenderness ε = d0/r0
Reynolds Re= �M,0v0r0/(d2

0μ0)
Froude Fr = v0/

√
gr0

Drawing Dr = uout,0/u0

Mass Peclet Pec = v0d0/D0

Temperature Peclet PeT = �M,0v0q0/(C0d0)
Mass Stanton Stc = γ0d2

0/(v0�M,0)
Temperature Stanton StT = α0d2

0/(v0�M,0q0)
Air-“ber Reynolds Re� = d0v0/ν�,0

Nusselt Nu� = α0d0/λ�,0

Prandtl Pr� = q�,0ρ�,0ν�,0/λ�,0

Sherwood Sh� = γ0d0/(ρ�,0Dd,�,0)
Schmidt Sc� = ν�,0/Dd,�,0
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(0,L) (one-dimensional equations) and (0,R(s̃)) × (0,L) (two-dimensional equations), re-

spectively. Second, to simplify the numerical treatment of the equations, one-dimensional

equations are transformed onto the space domain (0,1) and two-dimensional equations

onto the space domain (0,1)2 via

y(s) = ỹ(Ls), y(r,s) = ỹ
(
R(Ls)r,Ls

)
,

respectively. Since the “ber radiusR is an a priori unknown, this domain transformation

omits domain changes during the numerical solution of the problem, which would cause

computational expensive re-meshing of the computational domain. The transformation

inserts the unknownR into our model equations, but this can e�ciently be handled with

our numerical solution algorithm. Since the dimensionful “ber length̆L is a priori known,

choosings0 = r0 = L̆ would lead to a “ber length equal to one in non-dimensional form

(i.e.,L = 1).

Remark 3 (Averaged viscosity) In System2 we could approximate the cross-sectionally

averaged dynamic viscosity in the same way as the densities, i.e.,

〈
μ(c,T)

〉
R2/

(
πR2) ≈ μ(c̄,T̄).

However, due to in general highly nonlinear rheological models for the dynamic viscosity,

this approximation is not feasible for industrial setups.

As aerodynamic force modelfair we use

fair =
A�

Re2
�

ρ�ν
2
�

2R
F
(

τ ,Re�
2R
ν�

vrel

)
· τ ,

with normalized “ber tangentτ , ‖τ‖ = 1, and dimensionless drag functionF :S2 ×R
3 →

R
3 given in [12], whereS2 denotes the three-dimensional sphere. The relative velocity be-

tween “ber and air”ow readsvrel = v� …uτ . Note that to distinguish the “ber quantities

from the air”ow quantities all air”ow associated “elds are labeled with the index�. In par-

ticular, v� denotes the velocity,ρ� the density,ν� the kinematic viscosity,λ� the thermal

conductivity, andq� the speci“c heat capacity of the air. Moreover,Dd,� denotes the dif-

fusivity of diluent in the air andρd,� the diluent density in the air away from the “ber. All

these quantities are space- and time-dependent “elds assumed to be dimensionless and

known„for example provided by an external computation. The corresponding reference

values used for non-dimensionalization are denoted with the index0 and given in Table1.

Furthermore, we employ the models for the heat and mass transfer

α =
1

Nu�

λ�

2R
N

(
Re�

2R
ν�

vrel · τ ,Re�
2R
ν�

‖vrel‖,Pr�
q�ρ�ν�

λ�

)
,

γ = β ��, cref = 1 …
ρd,�

��

,

β =
1

Sh�

Dd,�

2R
N

(
Re�

2R
ν�

vrel · τ ,Re�
2R
ν�

‖vrel‖,Sc�
ν�

Dd,�

)
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with the associated dimensionless functionN : R3 → R and the model for the diluent

density in the air at the “ber surface�� given in [19]. The closing of System2 requires fur-

ther models for the di�usion coe�cient D, thermal conductivityC, evaporation enthalpy

δ, speci“c heat capacitiesq0
p, q0

d, dynamic viscosityμ as well as material densitiesρ0
p , ρ0

d .

For our industrial setup in Sect.5 we employ detailed models taking the “ber materials

and rheological e�ects into account.

4 Numerical framework
The “ber model for dry spinning of a single straight “ber (System2) is a coupled system

of one- and two-dimensional model equations. While the one-dimensional equations (2a)

can be formulated as parametric boundary value problem of ordinary di�erential equa-

tions, the two-dimensional equations (2b) form a system of radial advection-di�usion

equations with Robin-type boundary conditions. In [19] we presented a numerical frame-

work for these two subproblems together withan iterative coupling procedure that made

simulations of dry spinning processes feasible. However, when multiple hundred “bers

are spun simultaneously and a two-way coupling with the surrounding air”ow has to be

taken into account, the simulations are still very time-consuming and can easily involve

unfeasible computation times for industrial setups. When solving the coupled one-two-

dimensional problem, it turns out that the computation of the two-dimensional pro“les

of polymer mass fraction and “ber temperature forms the bottleneck. In this section we,

therefore, develop an algorithmic procedure to speed up the computation of these quan-

tities. The key idea is that no radial pro“les have to be computed in scenarios, where only

surface and averaged values of the two-dimensional quantities are needed. The associated

computation then simpli“es to the solution of an integral equation and an ordinary di�er-

ential equation. In the numerical treatment the solution of the integral equation reduces to

the solution of a linear system of equations with lower triangular system matrix, such that

it can be solved by forward substitution. When two-dimensional pro“les are needed, e.g.,

for the dynamic viscosity (cf. Remark3), we propose a new algorithm. In the following we

give a general description of the coupled problem, present our new numerical strategies,

describe the strategy for the iterative solving of the coupled problem, and give a survey for

the further weak iterative coupling with an air”ow simulation.

4.1 General problem formulation
To illustrate the structure of System2, we embed it into the class of problems that consist

of a one-dimensional boundary value problem of the form

Find y : [0, 1]→R
N with

∂sy(s) = f
(
y(s),ψ(·,s),s

)
, s ∈ (0, 1),

0 = g
(
y(0),y(1),ψ(·, 0),ψ(·, 1)

)
,

coupled with a two-dimensional radial advection-di�usion equation of the form

Find ψ : [0, 1]2 →R
M with

∂sψ(r,s) …diag
(
λ
(
y(s),ψ̂(·,s),s

)) · 1
r
∂r

(
r∂rψ(r,s)

)
= 0, (r,s) ∈ (0, 1)2,
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∂rψ(0,s) = 0, s ∈ (0, 1),

∂rψ(1,s) …diag
(
c
(
y(s),ψ̂(·,s),s

)) · ψ(1,s) …d
(
y(s),ψ̂(·,s),s

)
= 0, s ∈ (0, 1),

ψ(r, 0) =ψ in , r ∈ [0, 1],

with given right hand side functionalf :RN ×C1((0, 1),RM)× [0, 1]→R
N , boundary func-

tional g : RN × R
N × C1((0, 1),RM) × C1((0, 1),RM) → R

Q, and the further functionals
λ,c,d :RN × C1((0, 1),RM) × [0, 1]→R

M, the constantψ in ∈R
M andN ,M,Q ∈N. More-

over, we writediag(k) ∈ R
M×M for the diagonal matrix with entriesk ∈ R

M. To illustrate
the dependencies and to enable a decoupling of the problem for its numerical treatment,
we introduce the help functionψ̂ : [0, 1]2 →R

M. Note that for System2 we haveψ̂ = ψ as
well asg(y(0),y(1),ψ(·, 0),ψ(·, 1)) =g(y(0),y(1)), andN = M = Q = 2.

To clarify the structure of the problem in view of its numerical treatment, we for-
mally introduce (without discussing existence and uniqueness) the solution operators B :
C1((0, 1)2,RM) → C1((0, 1),RN ) and D :C1((0, 1),RN ) × C1((0, 1)2,RM) → C1((0, 1)2,RM)
associated to the one- and two-dimensional problems with B[ψ ] = y and D[y,ψ̂ ] = ψ , re-
spectively. Then, the coupled problem reads

Find y : [0, 1]→ R
N andψ : [0, 1]2 →R

M with

y … B[ψ ] = 0,

ψ … D[y,ψ ] = 0.

(3a)

The di�usion coe�cient and boundary conditions in the radial advection-di�usion equa-
tion in (3a) depend on the variableψ such that the associated problem is nonlinear. This
nonlinearity is tackled by decoupling into the following two problems

Find y : [0, 1]→ R
N with

y … B[ψ ] = 0,
(3b)

for given functionψ and

Find ψ : [0, 1]2 →R
M with

ψ … D[y,ψ̂ ] = 0
(3c)

for given functionsy, ψ̂ . In particular, we note that (3c) is a linear problem. Subsequently,
we explain the respective numerical algorithms for the decoupled problems (3b), (3c) and
discuss a coupling strategy to obtain a solution of the coupled problem (3a).

In view of the coupling we need the associated radial advection-di�usion equations av-
eraged over the “ber cross-sections, which we already introduce here

Find ψ̄ : [0, 1]→R
M with

∂sψ̄(s) = 2diag
(
λ
(
y(s),ψ̂(·,s),s

))
· (diag

(
c
(
y(s),ψ̂(·,s),s

)) · ψ(1,s) + d
(
y(s),ψ̂(·,s),s

))
, s ∈ (0, 1),

ψ̄(0) =ψ in .



Wieland et al. Journal of Mathematics in Industry            (2020) 10:8 Page 11 of 22

We make use of the corresponding formal solution operator̄D : C1((0, 1),RN ) × C1((0, 1)2,
R

M) × C1((0, 1),RM) → C1((0, 1),RM), such that the averaged problem can be written as

Find ψ̄ : [0, 1]→R
M with

ψ̄ …D̄[y,ψ̂ ,ψ |r=1] = 0
(4)

for given functionsy, ψ̂ , ψ |r=1.

4.2 Boundary value problem algorithm
We consider the one-dimensional boundary value problem (3b) and assume the func-
tion ψ to be given. This meansf(y(s),ψ(·,s),s) = f(y(s),s) andg(y(0),y(1),ψ(·, 0),ψ(·, 1)) =
g(y(0),y(1)), and (3b) can be summarized as

∂sy(s) = f
(
y(s),s

)
, g

(
y(0),y(1)

)
= 0, (5)

on the domain [0,1]. Since the functionf depends on multiple parameters, the numeri-
cal challenge lies in solving the problem for arbitrary parameter settings, which requires
suitable initial guesses of the respective solutions. As in our previous works [1, 19, 20]
we tackle this problem by a continuation-collocation method. This means we use a three-
stage Lobatto IIIa formula as collocation scheme [10], which is a Runge…Kutta scheme of
fourth order

yi+1 …yi …
hi+1

6

(
f(yi,si) + 4f(yi+1/2,si+1/2) + f(yi+1,si+1)

)
= 0, g(y0,yN ) = 0,

with yi+1/2 =
1
2

(yi+1 + yi) …
hi+1

8

(
f(yi+1,si+1) …f(yi,si)

)
,

with collocation points 0 =s0 < s1 < · · · < sNs = 1, intermediate pointssi+1/2 = (si + si+1)/2,
mesh sizehi = si …si…1and the abbreviationyi = y(si), i = 0, . . . ,Ns. The resulting nonlinear
system ofNs +1 equations for (yi)i=0,...,Ns is solved using a Newton method with numerically
approximated Jacobian matrix. Since the convergence of the Newton method crucially de-
pends on the initial guess, we adapt the initial guess iteratively by means of a continuation
method, solving a sequence of slightly varying boundary value problems. In the contin-
uation method we embed the boundary value problem (5) into a family of problems by
introducing a continuation parameter tuplep ∈ [0, 1]n, n ∈N,

d
ds

y = f̂(y;p), ĝ
(
y(0),y(1);p

)
= 0, p ∈ [0, 1]n,

f̂(·;1) = f, ĝ(·, ·;1) = g, f(·;0) = f0, ĝ(·, ·;0) = g0.

Here, 1 ∈ R
n denotes then-dimensional tuple of ones. The functionsf0, g0 are chosen

in such a way that forp = 0 an analytical solution is known. Given this starting solution,
we seek for a sequence of parameter tuples0 = p0,p1, . . . ,pm = 1 such that the solution to
the respective predecessor boundary value problem provides a good initial guess for the
successor. The solution associated top = 1 “nally belongs to the original system. With the
help of the continuation parameters certain terms in the ordinary di�erential equation
can be “rst excluded, then included. Also the boundary conditions can be varied. The
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core of a robust continuation procedure are the choice of a continuation path and the step

size control to navigate through a high-dimensional parameter space. They decide about

failure or success because there are not always existing solutions and several ways might be

possible. For the choice of the continuation path we refer to [19] and the step size control

follows the strategy given in [2].

4.3 Radial advection-diffusion equation algorithm
We consider (3c) with given functionsy, ψ̂ . This meansλ(y(s),ψ̂(·,s),s) = λ(s), such that

the problem becomes linear. Furthermore, we transform the unknownψ by the following

rule

χi
(
r,Λi(s)

)
= ψi(r,s), with Λi(s) =

∫ s

0
λi

(
s′)ds′, i = 1, . . . ,M,

where yi denotes thei-th component of any vector “eld y. For any componentχi, i ∈
{1, . . . ,M}, we end up with a radial advection-di�usion equation of the form

∂xφ …
1
r
∂r(r∂rφ) = 0,

φ|x=0 = φin , ∂rφ|r=0 = 0, ∂rφ|r=1 = aφ|r=1 + b,

with φ : [0, 1]2 → R, (r,x) �→ φ(r,x), as well as functionsa,b : [0, 1] → R and constant

φin ∈ R. If the function a is constant, the solution can be given analytically in terms of an

explicit expression. For non-constanta we treat the Robin boundary condition as Neu-

mann boundary condition with right hand side depending onφ and “nd an implicit solu-

tion expression with Green•s functiong in [3, 7, 16]. The solution expression reads

φ(r,x) = φin + 2π

∫ x

0
g
(
r,x …x′)k

(
x′,φ

(
1,x′))dx′,

with g(r,x) =
1
π

(
1 +

∞∑
m=1

J0(βmr)
J0(βm)

exp
(
…β2

mx
))

, k(x,y) = a(x)y + b(x),

(6)

where Ji denote thei-th Bessel functions of “rst kind andβm > 0, m ∈ N, are the (non-

trivial) ascending zeros of the “rst Bessel function of “rst kind, i.e.,J1(βm) = 0. These values

are tabulated in literature, see e.g. [7]. For φ|r=1 the solution expression yields a Volterra

integral equation of second kind

φ(1,x) = φin + 2π

∫ x

0
g
(
1,x …x′)k

(
x′,φ

(
1,x′))dx′,

with g(1,x) =
1
π

(
1 +

∞∑
m=1

exp
(
…β2

mx
))

.

(7)

The integral kernelg is singular forx = 0. Therefore, numerical integration in the sense of

quadrature formulas cannot be applied directly to the integral in (7), because they involve

the evaluation of the integrand function at or close to the singularity. Hence, we use the

product integration method that we introduced in [18, 19]. This means we substitute the

function k(·,φ(1,·)) piecewise by Lagrange interpolation polynomials and employ iterated
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integration by parts to isolate the singularity of the kernel functiong. Here, we choose
constant polynomials corresponding to the implicit Euler method yielding an A- and L-
stable method. For the discussion of stability properties as well as an extension to a higher
order method with quadratic polynomials and nodes corresponding to the Lobatto IIIa
collocation scheme we refer to [19].

Let 0 = x0 < x1 < · · · < xNx = 1 be the mesh points inx-direction. Substituting the inte-
grand functionk(·,φ(1,·)) piecewise by constants in the sense of the implicit Euler scheme
and subsequent integration yields

φi(1) =φ0(1) + 2π
i∑

j=1

∫ xj

xj…1

g
(
1,xi …x′)k

(
xj,φj(1)

)
dx′

= φ0(1) + 2π
i∑

j=1

(
…g(…1)

ij (1) + g(…1)
ij…1(1)

)
k
(
xj,φj(1)

)
, i = 1, . . . ,Nx,

with φi(r) = φ(r,xi), φ0(r) = φin , and the primitive

g(…1)
ij (r) = g(…1)(r,xi …xj),

g(…1)(r,x) =
∫ x

0
g
(
r,x′)dx′ =

1
π

(
x +

∞∑
m=1

J0(βmr)
β2

mJ0(βm)

(
1 …exp

(
…β2

mx
)))

,

which we evaluated analytically. This results in the linear system of equations

(
I … 2πG(1) · diag(a)

) · φ(1) =φin + 2πG(1) · b

for the unknown vectorφ(1) = (φ1(1), . . . ,φNx (1)) ∈ R
Nx . Here,φin = φin1 ∈ R

Nx with 1 ∈
R

Nx the Nx-dimensional tuple of ones andI ∈ R
Nx×Nx denotes the identity matrix. The

matrix G(r) = (Gij(r))i,j=1,...,Nx ∈R
Nx×Nx is de“ned as

Gij(r) =

⎧⎨
⎩

…g(…1)
ij (r) + g(…1)

ij…1(r), if 1 ≤ j ≤ i,

0, else.

Furthermore, we use the vectorsa = (a1, . . . ,aNx ) ∈ R
Nx , b = (b1, . . . ,bNx ) ∈ R

Nx using the
abbreviationsai = a(xi), bi = b(xi). The system matrix (I … 2πG(1) · diag(a)) is lower trian-
gular, such that the linear system of equations can be solved by forward substitution.

After solution of the integral equation for the boundary valuesφ(1) the pro“le φ(r) =
(φ1(r), . . . ,φNx (r)) ∈R

Nx , 0≤ r ≤ 1, can be calculated at the mesh pointsxi using the same
approximation strategy for the singular integral

φ(r) = φin + 2πG(r) · dφ(1) with dφ(1) = diag(a) · φ(1) + b.

For the calculation of the matrixG(r), we de“ne further lower triangular matricesH(βm) =
(Hij(βm))i,j=1,...,Nx ∈ R

Nx×Nx and� = (�ij)i,j=1,...,Nx ∈R
Nx×Nx as

Hij(βm) =

⎧⎨
⎩

exp(…β2
m(xi …xj)) …exp(…β2

m(xi …xj…1)), if 1 ≤ j ≤ i,

0, else,
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and

�ij =

⎧⎨
⎩

xj …xj…1, if 1 ≤ j ≤ i,

0, else.

Thus, we can re-write the entries ofG(r)

Gij(r) =
1
π

(
�ij +

∞∑
m=1

Hij(βm)B(βm,r)

)
, B(βm,r) =

J0(βmr)
β2

mJ0(βm)
,

and the pro“les are given as

φ(r) = φin + 2� · dφ(1) + 2
∞∑

m=1

(
H(βm) · dφ(1)

)
B(βm,r). (8)

Due to the separation of ther-dependency and its exclusive occurrence in the factorB,
this representation allows an e�cient implementation of the calculation of the pro“les
with complexity in O(max{N2

x Nβ ,Nr}) with Nβ the number of zerosβm of J1 taken into
account for the calculation. This is a great improvement compared to the implementation
given in [19] that has the complexityO(N2

x NβNr).
In view of System2 the cross-sectionally averaged quantitȳφ is needed. This quantity

can be obtained with the help of two di�erent approaches
• Method 1: Averaging of the profiles,
• Method 2: Solution of the integrated advection-diffusion equation.

In Method 1 the calculation follows directly from the pro“les

φ̄(x) = 2
∫ 1

0
φ(r,x)r dr. (9a)

Introducing a mesh inr-direction, 0 = r0 < · · · < rNr = 1, Nr ∈ N, and utilizing the trape-
zoidal rule we get

φ̄i =
Nr∑
j=1

(
φ(rj…1,xi)rj…1+ φ(rj,xi)rj

)
(rj …rj…1), i = 0, . . . ,Nx.

The complexity of Method 1 isO(NxNr).
In Method 2 the averaged quantityφ̄ is calculated with the help of the integrated

advection-di�usion equation (4) that reads component-wisely after transformation onto
the x-grid

∂xφ̄ = 2
(
a(x)φ(1,x) + b(x)

)
, φ̄(r, 0) =φin . (9b)

This di�erential equation can be solved by integration with respect tox omitting any dis-
cretization error in radial direction. Employing right Riemann summation, which corre-
sponds to the product integration method based on the implicit Euler scheme, we get the
recursion formula

φ̄0 = φin , φ̄i = φ̄i…1+ 2dφi(1)(xi …xi…1), i = 1, . . . ,Nx.
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In di�erence to Method 1, Method 2 omits any radial resolution and has the lower com-

plexity ofO(Nx). Moreover, in situations where only boundaryφ|r=1 and averaged values̄φ

are needed the calculation of two-dimensional pro“lesφ can be omitted completely when

Method 2 is used. Thus, Method 2 is obviously preferable to Method 1 due to e�ciency

reasons.

4.4 Coupling procedure
For the solution of (3a) we proposed an iterative coupling of the solution algorithm for

the one-dimensional boundary value problem with the solution algorithm for the radial

advection-di�usion equation in [19]. Here, we formulate this coupling procedure with

respect to the general problem formulation given in Sect.4.1.

In view of the radial advection-di�usion equation a solution of the integrated problem

(4) based on averaged quantities serves as initial guess in our coupling procedure. Since

we employ the pro“les of polymer mass fractionc and temperatureT to approximate

the averaged dynamic viscosity〈μ(c,T)〉R2/(πR2) (cf. Remark3) we have to build up the

two-dimensional pro“les of these quantities. In total the coupling of the one- and two-

dimensional model equations is done as described in Algorithm1.

In the coupling procedure (Algorithm 1) cross-sectionally averaged quantities are

needed for the solution of the one-dimensional boundary value problem in Line 5, i.e.,

cross-sectionally averaged quantities propagate into the operator B. These averaged quan-

tities have to be calculated after the computation of the two-dimensional quantitiesψ i+1

in Line 4. This can be done by either of the Methods 1 or 2. In view of its implementation

Method 2, which involves the solution of the integrated equation (4), needs further con-

siderations. We introduce two submethods for the computation of the averaged quantity

ψ̄
i+1

:

• Method 2a: Solve ψ̄
i+1

…D̄[yi,ψ i, (ψ |r=1)i] = 0,
• Method 2b: Solve ψ̄

i+1
…D̄[yi+1,ψ i+1, (ψ |r=1)i+1] = 0.

This means,Method 2a utilizes the pro“le information from the preceding iteration step,

whereasMethod 2b uses the updated information from the actual iteration step. At “rst

glance, Method 2b looks more straightforward but it has a major drawback: The nonlinear-

ity of the coupled problem (3a) comes from the nonlinearity of the one-dimensional and

two-dimensional equations themselves as well as the nonlinear coupling of these equa-

tions. Whereas the nonlinearity of the one-dimensional equations is treated by the con-

tinuation method, the remaining nonlinearities in common are tackled iteratively by Al-

gorithm 1. This means,ψ i+1 as calculated in Line 4 is only a solution ofψ i+1 … D[yi,ψ i+1]

when Algorithm 1 is converged. Therefore, when solving the integrated equation (4), ψ̄
i+1

Algorithm 1 Coupling procedure for “ber solution

1: (y0,ψ0) ← Solve (y0,ψ̄) … (B[̄ψ ], D̄[y0,ψ̄ ,ψ̄ ]) = 0
2: i ← 0

3: repeat
4: ψ i+1 ← Solveψ i+1 … D[yi,ψ i] = 0
5: yi+1 ← Solveyi+1 … B[ψ i+1] = 0
6: i ← i + 1

7: until ‖(yi,ψ i) … (yi+1,ψ i+1)‖ < tol
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coincides only with the averaged value ofψ i+1, when Method 2a is employed. Method 2b,

however, yields an inconsistent averaged quantitȳψ
i+1

. The equivalence of the cross-

sectionally averaged quantities as a result from Method 2a and Method 2b is only assured

when the coupling procedure (Algorithm1) is converged. We exemplify this issue with the

help of our numerical results given in Sect.5.

Remark 4 (Two-way “ber-air interaction) Since the nature of the air”ow in the spinning

duct has a deep impact onto the behavior of the “bers and also the “bers itself a�ect the

properties of the air”ow, a two-way coupling between the “bers and the air”ow has to

be taken into account. This coupling is realized by homogenized exchange models. The

exchange models are constructed in such a way, that the principle of action equaling reac-

tion is ful“lled, cf. [ 5, 6]. The two-way “ber-air-interaction is realized by a weak coupling

algorithm which iterates between “ber computations and air”ow simulations. This pro-

cedure allows the combination of self-implemented code for the “ber dynamics as well as

a commercial software for the air dynamics and was successfully used in studies on glass

wool manufacturing [2]. In total, our complete procedure consists of nested iterations: An

inner iteration for the coupling of one- and two-dimensional “ber equations (Algorithm1)

and an outer iteration realizing the mutual “ber-air”ow interaction. For further details we

refer to [19].

5 Industrial application
In this section, we consider the industrial example of [19] and investigate the performance

of the new numerical methods. In particular, we highlight the e�ciency of the calculation

of two-dimensional pro“les (c, T) using the representation (8) and compare Method 1,

Method 2a and Method 2b for the computation of cross-sectionally averaged quantities

(c̄, T̄ ). Note that for the sake of clarity we use dimensionful quantities to describe the

following setup and results.

Remark 5 Algorithm 1 is implemented in MATLABa version R2016b, where the BVP

solver bvp4c.m is used with the default values. For the computation of the two-

dimensional pro“les we chooseNr = 201 equidistant points inr- direction and Nβ = 318,

i.e., we use all non-trivial zeros ofJ1 smaller than 103. As stopping criterion for the itera-

tion in Algorithm 1 we usetol = 10…6. For the simulation of the air”ow we employ ANSYS

Fluentb with a solver accuracy ofO(10…6). The break-up criterion of the “ber-air coupling

algorithm satis“es an error tolerancetol = 10…5. For the considered industrial setup the

“ber-air coupling algorithm converges after 30 iteration steps.

In the setup 60 “bers are spun in a spinning duct and drawn down by a take up roller at the

duct bottom. The lengthL and tangent vectorτ of a “ber are given through its in”ow po-

sition in the spinneret and the position of the take up at the bottom. We consider the outer

basis{a1,a2,a3} ⊂R
3 as given in Fig.1. The holes in the spinneret are ordered in three par-

allel rows with 20 holes each. In particular, we consider the “bers of the middle row to be

spun in thex1…x3-plane corresponding tox2 = 0. The air”ow forms a counter-current to

the “ber ”ow and we assume dry air at the inlet (pipe radiusR�,in = 9.8·10…2m) with an ab-

solute air in”ow velocity (in negativea1-direction) at the bottom pipe of‖v�‖ = 0.22 m/s

and air in”ow temperature T� = 330 K. A cellulose acetate (CA)-acetone mixture is dry
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Figure 1 Industrial dry spinning setup for uni-axial “bers with take up of the produced “bers at the bottom
side of the spinning duct.Left: Sketch of the dry spinning device and orientation of the outer basis{a1,a2,a3}.
Right: Sketch of the holes(marked withX) in the spinneret (not in scale). All proceeding simulation results are
shown for the “ber extruded from the central position(green X)

spun. For the closing of our dry spinning model (System2) we employ rheological models

for the quantitiesC, D, h0
d, δ, μ that are given in [19]. All further process parameters, the

speci“c reference values as well as the dimensionless numbers are listed in the Appendix.

Cellulose acetate/acetone dry spinning was previously also investigated in [9, 17]. The

results obtained by our model-simulation framework in [19] stand in accordance to the

data in [17]. Exchanging the algorithmic by the new numerical methods (developed in

Sect.4) has no e�ect on the approximation quality, but only on the computational e�ort

of the simulation. However, before we discuss the performance of the new methods, we

present the simulation outcome to illustrate the typical “ber behavior for an industrial dry

spinning setup. The solutions of the 60 “bers do not show visible di�erences, such that we

illustrate„as an example„the solution behavior for the “ber that is centrally located in

the spinning duct (cf. Fig.1) in Fig. 2. The cross-sectionally averaged CA mass fraction

increases fromc0 = 0.29 at the inlet to c̄ = 0.90 at the outlet, indicating the evaporation

of the acetone during the spinning process. The “ber speedu reaches the take up speed

uout = 10 m/s approximately 1 m away from the nozzle. The tensile stressσ increases cor-

respondingly to the changes ofu and the integrated viscosity〈μ〉R2. Directly at the nozzle

the “ber loses heat due to acetone evaporation and away from the nozzle the “ber temper-

ature approaches the air”ow temperature. The “ber thinning is caused by the “ber take up

as well as the evaporation of diluent. The “nal “ber radius isR = 1.06· 10…5m (cf. Fig.3).

The e�ect of solvent di�usion in the “ber interior can clearly be seen at the pro“le for the

polymer mass fraction in Fig.3 showing an inhomogeneous CA-acetone distribution in

radial direction. Since there are no visible radial e�ects in the temperature due to the fact

that the inverse of the temperature associated Peclet number 1/PeT is three magnitudes

larger compared to the mass associated one 1/Pec (cf. Table4) we omit to show a radial

temperature pro“le.
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Figure 2 Solution quantities of a centrally located “ber (cf. Fig.1).Top-left: Polymer (CA) mass fraction
(averaged̄c, at the “ber boundaryc|r=1 and referentialcref ).Top-right: Scalar “ber speedu.Bottom-left: Tensile
stressσ .Bottom-right: Temperature (averaged̄T , at the “ber boundaryT |r=1, airT�)

Figure 3 Left: Resulting “ber radiusR for the solution quantities in Fig.2.Right: Polymer mass fraction of “ber
solution (cf. Figs.1 and2)

Investigating the performance of the new numerical methods, “rst, we highlight the e�-

ciency of the calculation of pro“les using the representation (8). Whereas in [19] the total

simulation time with a straightforward implementation for the pro“le solution (regardless

of (8)) was 7.95 h, the simulation only needs 5.20 h utilizing the e�cient pro“le calculation

(cf. (8)) here, which means a reduction of 34.6% in total. Exemplarily consideringNr = 201

and Nx = 501 points in r- and x-direction for the pro“les as well asNβ = 318, the calcu-
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Figure 4 Comparison of averaged polymer mass fractionc̄ obtained with Method 1, Method 2a and
Method 2b.Top-left: After second iteration step.Top-right: After 13th iteration step (converged).Bottom:
RelativeL2-error with respect to the solution obtained by Method 1 as reference

lation time for one single pro“le reduces from 97.89 s to 0.94 s. Thus, in view of spinning

setups where multiple hundred “bers are spun simultaneously this e�ciency in the pro“le

computation is absolutely essential.

Second, we compare the three di�erent procedures (Method 1, Method 2a, and

Method 2b) for the computation of the cross-sectionally averaged polymer mass fraction

c̄ and consider Method 1 (averaging of two-dimensional pro“les), which has been used

in [19], as reference. We exemplarily consider the last step in the air-“ber coupling (30th

iteration) where Algorithm 1 converges after 13 iteration steps. Figure4 shows the results

after the 2nd and the 13th iteration step. We clearly see that Method 2b initially produces

an inconsistent solution due to the use of inconsistent pro“le information, see Sect.4.4.

The calculated averaged polymer mass fractionc̄ exceeds the average of the associated

pro“le (solution obtained by Method 1) greatly. This behavior could lead to a completely

unphysical solution behavior in the next iteration steps and even to a failure of the itera-

tive coupling procedure (divergence of Algorithm1). On the other hand, Method 2a yields

a consistent solution. As soon as Algorithm1 is converged, the solutions obtained with

Method 1, Method 2a and Method 2b coincide. This fact can be seen in Fig.4 indicating

the relativeL2-error between these three solutions with Method 1 as reference. Conse-

quently, Method 2a should be used for the calculation ofc̄, T̄ . In view of computational

time the di�erence between Method 1 and Method 2a is marginal. Whereas Method 1

takes 1.30· 10…3s, Method 2a needs 3.42· 10…4s for Nx = 501 points. However, the clear

advantage of Method 2a comes into play when no two-dimensional pro“les need to be

calculated.
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6 Conclusion
For the modeling of viscous “bers in dry spinning processes one-dimensional equations
for tangential “ber velocity and stress coupled with two-dimensional radial advection-
di�usion equations for polymer mass fraction and temperature are used. In this paper we
introduced new algorithmic concepts for the fast computation of the two-dimensional in-
formation. The e�cient calculation of surface values and averaged quantities as well as
the speed up of the coupling procedure for one- and two-dimensional equations yields
feasible computation times for simulations where multiple hundred “bers are spun si-
multaneously and mutual air-“ber interaction e�ects are incorporated. Consequently, our
proposed model-simulation framework provides the possibility for optimizing industrial
dry spinning devices. Depending on the mixture to be spun and the device the rheological
models as well as the material and process parameters must be certainly adapted.

Appendix: Data to industrial process
In this paper (cf. Sect.5) we consider the same dry spinning setup that was studied in [19]
and demonstrate the performance of the new numerical methods (cf. Sect.4). We assume
that a polymer solvent mixture consisting of cellulose acetate (CA)-acetone is dry spun.

Table 2 Physical parameters of the industrial dry spinning setups taken from [9,17] and
setup-speci“c reference values

Physical parameters
Description Symbol Value Unit

CA density ρ0
p 1300 kg/m3

Acetone density ρ0
d 767 kg/m3

CA spec. heat cap. q0
p 1600 J/(kg K)

Acetone spec. heat cap. q0
d 2160 J/(kg K)

Molec. weight acetone Md 5.81· 10…2 kg/mol
Molec. weight air M� 2.90· 10…3 kg/mol
Molar volume acetone Vd 6.60· 10…5 m3/mol
Molar volume air V� 2.01· 10…5 m3/mol

Setup-specific reference values
Description Formula

Mass line density �M,0 = ρ(cin )R2
inπ

Curve r0 = H
Diameter d0 = 2Rin

Velocity v0 = uin

Viscosity μ0 = μ(cin ,Tin )
Spec. heat cap. q0 = q(cin )
Thermal cond. C0 = Cconst

Di�usivity D0 = D(cin ,Tin )
Take up speed uout,0 = uout

Further scales b0 = bin ,b ∈ {T ,α,γ ,p�,
λ�,ν�,q�,ρ�,Dd,�}

Table 3 Process parameters of the industrial dry spinning setup (cf. Fig.1) assuming the air”ow
without “bers (“rst step in the “ber-air”ow coupling)

Process parameters
Description Symbol Value Unit

Device height H 5.1 m
Nozzle radius Rin 3.14· 10…5 m
Speed at nozzle uin 5 m/s
Take up speed at bottom uout 10 m/s
Polym. mass fract. at nozzle cin 0.29 …
Temperature at nozzle Tin 348.15 K
Total number of “bers M 60 …
Heat transfer at nozzle αin 5.11· 102 W/(m2K)
Mass transfer at nozzle γin 1.64 kg/(m2s)
Air pressure at nozzle p�,in 1.01· 105 Pa
Air thermal cond. at nozzle λ�,in 2.42· 10…2 W/(m K)
Air kin. viscosity at nozzle ν�,in 1.46· 10…5 m2/s
Air spec. heat cap. at nozzle q�,in 1.01· 103 J/(kg K)
Air density at nozzle ρ�,in 1.23 kg/m3

Diluent di�usion in air at nozzle Dd,�,in 1.27· 10…5 m2/s
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Table 4 Dimensionless numbers for one representative “ber (cf. Fig.1) in the industrial dry spinning
setup assuming the air”ow without “bers (“rst step in the “ber-air”ow coupling). Note that some
dimensionless numbers might vary during the simulation due to the “ber-air”ow interaction (cf.
Table1)

Dimensionless numbers
Description Symbol Value

Slenderness ε 1.23· 10…5

Reynolds Re 1.79· 103

Froude Fr 7.07· 10…1

Drawing Dr 2.00
Mass Peclet Pec 4.16· 106

Temperature Peclet PeT 2.73· 103

Mass Stanton Stc 3.76· 10…4

Temperature Stanton StT 5.88· 10…5

Air drag associated A� 1.14· 102

Air-“ber Reynolds Re� 2.15· 101

Nusselt Nu� 1.33
Prandtl Pr� 7.44· 10…1

Sherwood Sh� 6.59
Schmidt Sc� 1.15

A similar setup has been investigated in [9, 17], from where we take the physical material

parameters for the polymer CA and the diluent acetone, see Table2. The setup-speci“c

reference values used for the non-dimensional form of the model equations (cf. System2)

are also given in Table2. All further process parameters can be found in Table3. Utilizing

the setup-speci“c reference values (cf. Table2) the resulting dimensionless numbers are

given in Table4.
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