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available at the end of the article petroleum gas (LPG) cylinders. This is an industrial challenge that was proposed at an
European Study Group with Industry, by a Portuguese energy company, for which the
LPG cylinder is the main asset of its LPG business. Due to the importance of this asset,
an acquisition plan must be defined in order to determine the amount of LPG
cylinders to acquire, and when to acquire them, in order to optimize the investment.
As cylinders are returned and refilled, the reverse logistic flows of these assets must
be considered. As the classical inventory models are not suitable for this case study,
three new inventory models, which account for the return of LPG cylinders, are
proposed in this work. The first proposed model considers deterministic constant
demand and continuous returns of LPG cylinders, with discrete replenishment from
the supplier. The second model is similar, but for the case when the returned
cylinders cover for the demand. A third model is also proposed considering that both
the demand and the returns are stochastic in nature and the replenishment from the
supplier is discrete. The three models address different scenarios that the company is
either currently facing or is expecting to occur in the near future.
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1 Introduction
This work addresses an industrial challenge that consists in planning the acquisition of lig-
uefied petroleum gas (LPG) cylinders. The challenge was proposed at an European Study
Group with Industry, by a Portuguese company of the energy sector (named in this paper
ALPHA for confidentiality purposes). This company started its activity in 2006 focusing
in the production and distribution of biofuel. Since then, it has extended its business areas
to other fuels and energy sources. The LPG cylinder business started in 2012, and since
then it has experienced a continuous growth. ALPHA currently commercializes propane
gas in two types of cylinders: type A with 9 kg capacity, and type B with 45 kg capacity.
In Portugal, companies selling LPG cylinders are also responsible for collecting the

empty cylinders, regardless of the company from which the previous cylinders were
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bought following a direct replacement policy [13]. The empty cylinders returned to the
company can be filled again with LPG and sold to the clients. As the acquisition of new
cylinder bottles is expensive, reusing is a key factor for profitability. However, the cylinders
are assets owned by the several companies operating in this sector, and each competitor
can only refill its own cylinders. Clients frequently decide to change their LPG supplier
and, when they do, they return to the new supplier a cylinder that is owned by a different
company. Companies are required to return the cylinders to the company that owns them,
but that process is time consuming. Therefore, companies experiencing growth, such as
ALPHA, have to purchase additional cylinders to meet the demand.

The objective of this industrial challenge was to find a model to forecast the demand
and return rate of each type of cylinder, and to define an assets acquisition plan, i.e., to
determine when to order to the external supplier new LPG cylinders (Order Point) and
how many should be bought (batch size), in order to optimize the investment.

Linear models related techniques concerning energy quantities forecasting are attract-
ing a great attention within the energy sector. Di Persion et al. [8] applies an exponential
smoothing model, ARMA-ARIMA and ARIMA-GARCH models for forecast of energy
load in the Italian energy market. In [3] the authors model the logarithm of the spot price
of electricity with a normal inverse Gaussian process. Costa e Silva et al. [7] presents time
series data mining for forecasting energy prices of the Iberian market. Street et al. [14]
discuss the potential for creating a flexible electricity-gas market in Brazil mainly due to
the need of using natural gas for power generation in certain periods of the year. Several
authors use forecasting techniques to feed information to inventory models. Lai et al. [11]
develop an optimization model to control the inventory level of Liquid Natural Gas at a
downstream facility. A stochastic evolution of the price state vector during the given time
horizon is used in an inventory model that can assist in the decisions regarding regasifica-
tion, sale and storage. Chebeir et al. [5] consider Neural Networks to forecast the demand
of natural gas and use the forecasts as input for a strategic planning model that deter-
mines the economic feasibility and the development strategy for natural gas production
and distribution.

The methodology used to answer the challenge addressed in the present paper can be
divided into three phases:

— In the first phase, it is necessary to forecast demand, sales and the return of LPG

cylinders (further details can be founded in [6]).

— Subsequently, in the second phase, this forecast is used in an inventory management

model.

— Finally, in the third phase, since it is necessary to consider the return rate of LPG

cylinders, reverse logistic models and closed loop supply chain models are explored.

In order to answer to what is required in the first phase, for forecasting of demand and re-
turns, time series (TS) techniques (i.e. exponential smoothing and moving averages), Mul-
tiple Linear Regression models (MLR) and Artificial Neural Networks (ANN) were used
in [6]. In order to eliminate the drawbacks of these methods and maintaining their advan-
tages, the previous methods were combined in an ensemble method. For each method, a
probability density function was defined and a Monte Carlo simulation was used. The ob-
tained forecast values are a linear combination with weights proportional to the accuracy
of each method. This methodology leads to more robust forecasts and allows to deal with
nonlinearity and seasonality.
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Concerning with the second phase, classical inventory models, such as the Wilson
model, determine the Economic Order Quantity (EOQ) as the batch size that minimizes
the total cost of stock management. A drawback of this approach is that it does not take
into account reverse logistics. In the company, returned items arrive continuously and not
in discrete moments. Furthermore, there are three different possible destinations for re-
turned items: Cleaning, Requalification and Disposal. Therefore, reverse logistics (i.e. the
return of cylinders) plays a crucial role in this challenge.

The focus of the current paper is in the last two phases.

The structure of this paper is the following. This Introduction section presents the
problem description, the objective of the proposed industrial challenge and the adopted
methodology. Section 2 briefly accounts for a literature review on the classical inventory
models and the reasons why they are not applicable in this case study. Section 3 proposes
an adaptation of the classical models proposed by Wilson and Teunter to the case where
deterministic continuous returns are considered, along with discrete replenishment from
the supplier (Sect. 3.1); the case where the deterministic continuous returns make replen-
ishment from the supplier not needed (Sect. 3.2); and finally the case where demand and

returns are stochastic (Sect. 3.3). In Sect. 4, the final conclusions are presented.

2 Literature review
Decision making regarding how much and when to procure the goods involved in a pro-
ducing system is usually ruled by inventory management models, which intent to optimize
a given cost function.

There are several methodologies proposed for inventory management. Two widely used
classical inventory models are the ones presented by Wilson [10, 16] and Richter [12],
which defined the two principal classes of methods used, described in following sections.

2.1 Economic order quantity
Classical inventory models, such as Wilson’s deterministic model [10, 16], determine the
EOQ as the batch size that minimizes the total cost of stock management. The total cost
is the sum of three components, namely:

— Acquisition costs (C4)—the price of acquiring the assets.

— Setup costs (or ordering costs) (Cs)—the fixed cost for every order, such as,

transportation, collection, etc.

— Holding costs (Cy)—insurances, taxes, rent, electricity, salary, opportunity costs, etc.

The EOQ model is an attempt to estimate the optimal order quantity (Q=) by balancing
the conflicting costs of holding stock and of placing replenishment orders (Fig. 1). The
effect of order quantity on stock-holding costs is that, the larger the order quantity for a
given item, the longer the average time in stock, and the greater will be the storage costs.
On the other hand, the placing of a large number of small-quantity orders produces a
low average stock, but a much higher cost in terms of the number of orders that need
to be placed and the associated administrative and delivery costs. Once the forecast of
the demand of LPG cylinders is determined, an EOQ model can be used for inventory
management [2].

Another classical approach is the Continuous Review Policy (s, Q), which considers
probabilistic demand [2]. This is a continuous inventory checking policy, where the or-
dering of Q amounts is performed when the inventory level reaches the reorder point (s).
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Figure 1 Cost curves and EOQ in Wilson's Cost per
deterministic model time unit
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The advantage of this policy is that it can handle scenarios where demand is high but the
loss of order quantity is variant.

A drawback of the classical approaches is that they do not take into account reverse
logistics, which in the industrial challenge addressed in the present paper (i.e. the return
of cylinders) plays a crucial role. The plan should take in account the empty cylinders that
are returned to the company, which can be either reused or disposed of. Therefore, we
started by applying two inventory models with reverse flows found in the literature, using
the data provided by the company. Afterwards, two deterministic models and a stochastic
model tailored for this case study, were developed.

2.2 Inventory models with reverse flows

For organizations that practice reverse logistics, i.e. which reuse products and/or mate-
rials, the stock levels should account for the amount of returned items. Moreover, the
inventory management plan must include the costs of the recovery operations.

Richter [12] extended the EOQ model to allow the integration of used products, which
were repaired and incorporated in the production system. It assumes a stationary demand
in a model with two shops. The first shop is producing new products and repairing prod-
ucts used by the second shop. This model considers deterministic demand and return
rates, and also a constant disposal rate. Different holding costs in the first and second
shops are considered in the model. In Richter’s model, the returned items may either be
reused or disposed of.

The inventory model developed by Teunter [15] is also based on the EOQ model, how-
ever it considers the return flow of items that can be recovered. The model proposed by
Teunter also uses deterministic demand and return rates. The difference from Richter’s
model is that it considers a varying disposal rate instead of a constant rate. Additionally,
different holding costs for manufactured, recoverable and recovered items can be consid-
ered separately. Returned items may also be either reused or disposed of. In this model,
M manufacturing batches and R recovery batches succeed each other, but there can be
only two cases: either M = 1 or R = 1. A schematic of demand, purchases, returns, and the
serviceable stock levels is shown in Fig. 2.

The formula (1) computes the Total Cost (7C) per unit of time, for the case with M =1,
and comprehends the sum of three components: the Acquisition Costs, the Setup Costs,
and the Holding Costs.

Knd(1-) K
Qm Q,

1 1 1 g-8
+hm5(1 -B)Qm +hr§ﬂQr +hn§<,3Qr + (IB I

TC = c,uh(1 = B) + ¢, AB + car(g — B) +

1-p

=
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Figure 2 Inventory stock model according to Teunter [15], for the case M=1and R=5

The formulas for the optimal batch size for manufacturing, Q,,, and for recovery, Q,,

are, respectively:

2K,,A(1 - B)
ha(1=B) + (B - $52)

Q = 2K\ 3)
"\ b+ hy,

and the number of recovery batches is:

Qm = (2)

and

= B Qnm (4)
1-B @
where:
A—demand (continuous and deterministic);
g—return percentage (0 < g < 1);
B—reuse percentage (0 < 8 < 1);
Ag—items returned;
AB—items reused;
Mg — B)—items disposed of;
t—continuous time variable;
¢m—cost of manufacturing an item;
¢,—cost of recovering an item;
cg—cost for disposal of an item;
K,,—setup cost for manufacturing;

K, —setup cost for reusing;

Page 5 of 15
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h,,—holding cost of a manufactured item;
h,—holding cost of reused item;
h,—holding cost of a recoverable item.
Other developments of the EOQ model are due to Alivoni et al. [1]. The authors
proposed a stochastic model where the decisions between production or purchase of
new items integrates product reuse, in order to identify the need of placing a produc-

tion/purchasing order to avoid stock-out situations.

3 Developed inventory models

In order to solve the current industrial challenge of assets acquisition management, the
formulas (1), (2), (3) and (4) from Teunter’s model were implemented in a spreadsheet for
the company to compute: the total cost per unit of time (case M = 1); the optimal batch
size for manufacturing, Q,,, and for recovery, Q,; and the number of recovery batches, R.

Although this is an useful tool for assisting the company manager to make decisions
about assets acquisition, the models presented before do not contemplate all the specifi-
cations required in this case study.

Currently the company policy is based on continuous replenishment, i.e., the returned
items (r, is approximately 60% of the total cylinders of the company) arrive continuously
and not in discrete moments. There are three different possible destinations for returned
items: Cleaning, Requalification, and Disposal, as depicted in Fig. 3.

The majority of the returned LPG cylinders (98%) only need cleaning, and a small per-
centage (about 2%) need requalification. At the moment, because this business is relatively
new for the company, there are no LPG cylinders that need to be disposed of, but in the
future this situation can occur. The costs and time for each of these processes are different.
A cleaning unit cost of C, = 0.5 €, requalification cost of C; = 5 € and a negligible cost
for disposal (C;) are assumed. These are example values for confidentiality reasons. The

quantity of batches to clean, requalify and dispose off are denoted by Q,, Q; and Q;.

I

Initial stock

Acquisition
Cn = 22€

9 . Filling .
Returned Cleaning ¢;, =0,84€ Operational Demand

Items C, =0,5€ Cy, =5,86€ Stock A

Requalification

Disposal
C, = 0€

< r ~ 60%

Figure 3 Reverse flows and inventory stock costs in company
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Figure 4 Deterministic inventory stock model D, developed for our case study

Approximately 40% of the total cylinders of the company are acquired. Returned and
acquired cylinders are filled (with costs Cy, and Cp,, for A and B cylinders respectively)
and go to operational stock, in order to meet the demand (1).

Teunter’s model considers that both the acquired and returned cylinders arrive at dis-
crete moments periodically in time, but actually that only happens with the acquired cylin-
ders. In the company, the returned cylinders arrive continuously to the warehouse, and are
continuously cleaned, requalified (with rate u + d) and filled, as depicted in Fig. 4. There-
fore, a continuous replenishment model could be adapted to this case study. In this setting,
two cases may occur:

— Caser>u+d:

If demand exceeds the incoming flow, it is necessary to buy new cylinders from
suppliers. Thus, a Deterministic Model D, with continuous returns, is developed for
this case.

— Case A <u+d:

If the returned cylinders are enough to respond to the demand, buying new
cylinders is unnecessary. To address this case, the Deterministic Model R, without
purchases, is considered.

In both models, demand and return rate are considered deterministic constants. How-
ever, this does not occur in the company under study. For this reason, a third stochastic
inventory model was developed.

On the next subsections each of the three proposed models are described.

3.1 Model D—deterministic continuous returns

The developed deterministic model D, based on EOQ [10, 16], considers:
— deterministic continuous constant demand,
— deterministic discrete replenishment from supplier,

— deterministic continuous constant replenishment from returned cylinders,

Page 7 of 15
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for the case A > u + d, when returns are not enough to respond to the demand and hence
the company has to buy new cylinders from the supplier (Fig. 4). In the last graph in Fig. 4,
A — (u + d) corresponds to the slope.

As in the classical EOQ formula, in this model, the total costs considered are the sum
of the acquisition costs Cy, setup costs Cs and holding costs Cy.The acquisition costs in
equation (5) consider the cases where: new cylinders are acquired from the supplier with
a cost C,,, the cylinders are reused with just a cleaning cost C,, or the case where the
returned cylinders have to be requalified with a cost C,. In these three cases, a constant
filling cost is also included, C;, and C, for A and B cylinders, respectively. In the future,
a disposal cost C; could also be considered. At the moment, because this business is rela-
tively new for the company, there are no LPG cylinders that need to be disposed of. Hence,

the rate of cylinders returned and disposed of (/) is zero. The acquisition costs are:
Ca=Cu(1-r)XA=1)+ Cuu(rA —1I) + Cy(r —u)(A - 1I), (5)

where A is the constant demand rate (units/units of time), I is the initial stock, r is the
return rate, u is the rate of cylinders returned and cleaned, and d = r — u is the rate of
cylinders returned and requalified.

The setup costs are:

_Ky(A-D(1~-1) . K, —Du . KA —=D(r—u)

C.
s Qu Qu Qu

(6)

where K, is the production fixed setup costs, K, is the reuse fixed setup costs, K} is the
requalification fixed setup costs, Q,, is the batch size for buying new cylinders, Q, is the
batch size for reusing cylinders, and Qj is the batch size for requalifying cylinders.

The holding costs are:

CH:hmw+huu—Qu +hd% +h,~£, (7)
2 2 2 2
where /,,, is the holding cost per new item bought per year, /,, is the holding cost per reused
item per year, /1, is the holding cost per requalified item per year, and /%; is the holding cost
per existent item in stock per year.
By deriving the total costs, it is possible to obtain the expression for the optimal quan-
tities: Q;, —batch size for buying new cylinders; Q} —batch size for reuse; and Qj—batch

size for requalification, that minimize the total costs, using the following expressions, re-

spectively:
2K, (A -1
Q= # ®)
. 2K
Q.= T ©)
2K (A -1
Q= ezl (10)

hg
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Qm
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Figure 5 Stock quantity across time, lead time, and order point for Model D

The stock levels according to this model present a “saw” shaped graph, as can be seen in
Figs. 4 and 5. Given the demand 2, the return rates « + d and the lead time /, the quantity
in stock that marks when an order should be placed to the external supplier is called the
Order Point (OP). This is the quantity that equals the exact amount of goods necessary
to fulfil the demand during the lead time. The lead time is the interval of time between
placing an order to the supplier and the reception of the ordered goods.

From the triangle in Fig. 5, given that the slope A — (4 + d) is constant, the following
expression holds:

%:x-(md) (11)

thus the OP is found as:
OP=(r—(u+d)l (12)

This model was also implemented in a spreadsheet and provided to the company for

being used with the company’s data.

3.2 Model R—deterministic without purchases
For the case A > u + d, the developed deterministic model R, without purchases considers:
— deterministic continuous constant demand,
— unnecessary replenishment from supplier,
— deterministic continuous constant replenishment from returned cylinders.
In this setting, there is a period T; where there is simultaneously continuous replenish-
ment of cylinders (with rate u + d) and demand being satisfied (with rate A); and a period
T, where replenishment is interrupted and there is only demand being satisfied. The ser-
viceable stock levels corresponding to this scenario are schematized in Fig. 6, last graph.
In this Figure, (# + d) — X and A denote the slopes of the respective lines.

From the slopes of the main triangles in Fig. 6 last graph, we have:

M

T = —, 13

YT urd-a (13)
M

T2=7, (14)

A
M:Q—A«TI:Q<1— ) (15)

u+d
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Figure 6 Deterministic inventory stock model R for continuous returns without purchases

where M is the maximum stock level, and the batch size corresponds to the total produc-
tion during period T1, i.e., Q = (u + d)T1.
The total costs are given by:

TC(Q) = Cou(D —1I) + Cad(D - I)

D Q A
+(Ku+Kd)6+Ch§(l_u+d>' (16)

where D is the demand for the planning horizon (a year) and X is the daily demand. By the
differentiation of the total costs expression (16), the optimal quantity Q* that minimizes
the total cost is determine as:

. 2K, +Ky)D | u+d
= . 17
Q Ch u+d-»x (17)

If the lead time [ is longer than the period of demand, i.e. [ > T5, then, from the slope in

the blue triangle in Fig. 7:

=u+d—-x (18)
therefore the OP can be deduced as:

OP=M—-(u+d-r)(I-T). (19)

Replacing M and T, using equations (15) and (14), the order point OP is obtained as a

function that depends only on the quantity of cylinders Q, the demand and reutilization
rates, and lead times, as:

u+d

OP:Q<1+ )+Z(A—(u+d)). (20)
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Figure 7 Stock quantity across time, lead time, and OP for Model R

3.3 Model S—stochastic inventory model

In models D and R, presented in Sects. 3.1 and 3.2, it is assumed a deterministic constant
demand and return rate. However, in the company, these rates are neither constant nor
deterministic. In fact, both seasonality and trend are present. This is in line with a study
of the German energy market by Di Persio and Perin [9], where it was found that electricity
consumption is also affected by seasonality.

To correctly plan the acquisition of new cylinders from the supplier, it is necessary to
proceed with the forecast not only for the demand, but also for the reverse logistic flows.

For this purpose, several forecasting techniques were used by Correia et al. in [6]. Fore-
casting of demand and returns was made using exponential smoothing and moving av-
erages to compute seasonal coefficients and to forecast demand and returns. In the same
work, significant relations were found between demand and Temperature, Promotional
Campaigns, Sales Objectives and Expectation of Price Increase, using MLR. Similar re-
lations were studied for returns. Furthermore, ANN were also used to forecast demand
and returns. The results obtained using different forecasting techniques were compared.
When ANN is used, the Mean Squared Error (MSE) is 30% of the MSE achieved using
MLR, and 10% or 20% of the MSE achieved using TS, depending on the type of bottles.
For further details see [6].

In order to improve the forecast, the probability density functions of the forecasts ob-
tained by each of these individual methodologies were combined in a ensemble approach.
In this approach, similar to the one proposed in [4] by Cassettari et al., a weighted lin-
ear combination of the density functions of the forecasts was used for obtaining a better
final forecast. This methodology leads to more robust forecasts and allows to deal with
non-linearity and seasonality. The forecasted mean and Root Mean Square Error (RMSE)
were used as input values for the stochastic inventory models developed in the present
case study.

For this scenario, a stochastic inventory model S, based on the continuous review policy
(s,Q) was presented, which considers:

— continuous stochastic demand,

— discrete replenishment from supplier,

— continuous stochastic replenishment from returned cylinders,

— constant lead times,
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Figure 8 Stochastic inventory stock model S

as depicted in Fig. 8. The graphs, from the top to the bottom, present: the mean demand,
1; the acquisition of new LPG cylinders Q,,; the mean refilling, 1, and requalifing, ug,
number of cylinders; and the serviceable stock.

To fit a probability distribution for the demand and return rates, our data was analysed
using histograms, Q-Q plots and the Shapiro Wilk test for normality. Sales of type B bot-
tles was somewhat positively skewed, but both the sales of type A bottles, and the returns
of type A and type B bottles, could be considered normally distributed, for a 1% signif-
icance level, since the Shapiro Wilk test p-values are 0.0179, 0.4317 and 0.1736, respec-
tively. Thus, it is assumed that the demand during lead time, d/, is normally distributed
with mean equal to 1 and a standard deviation of o, i.e. dl ~ N(iq, 04). In this case,
the OP is given by:

OP = jig; + 240, (21)

where z, = @71(1 — @) is the safety factor for a given service level 1 — « (see Fig. 9). The
second term of equation (21) is called the safety stock (SS). This term is intended to absorb
the demand variations and to prevent out-of-stock situations. Furthermore, the parameter
o measures the probability of out-of-stock in a replenishment cycle. Usually, « is a small
value decided by the company, such as 5% or 1%. It is desirable to choose a small value
for a because the smaller this value is, the less is the probability of happening a situation
where the company does not have enough cylinders to satisfy demand, but this causes to
have a larger safety stock, which costs more money. Therefore the trade-off between costs
and out-of-stock situations must be carefully planned by the company.

The demand is replaced by the random variable A — (4 + d), i.e. by a linear combination
of normally distributed random variables: . ~ N(u;,0;), u ~ N(,, 0,) and d ~ N (g, 04).
For these random variables u; and o; are the forecasted mean and RMSE, with i € {A, u, d}.

If, for simplification reasons, the independence of the random variables A, u and d is

assumed, then the mean and the standard deviation of the demand is given, respectively,
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Figure 9 Service level and the corresponding safety ZNN(O 1)
factor ’
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Ma—(urd) = M — Mo — Md (22)

and

O)—(u+d) =4/ O')% + ()‘u2 + O';. (23)

However, independence may not be a reasonable assumption in this case study. In fact,
as consumers return the empty cylinders when they buy new LPG bottles, there is a sig-
nificant correlation between sales and returns (R = 0.7). Therefore, formula (23) can be
adjusted to cover the case of correlated variables (Eq. (24)), where covariance can be esti-
mated with the sample covariance observed in the data.

Orctusa) =\ 07 + 02 + 0 = 2COV(h,u) ~ 2COV (%, d) + 200V (u, ). (24)
Finally, substituting (22) and (24) in (21), the OP is given by:
OP = (1), — [ty — Ia) + ZaOr—(ura)¥ L. (25)

This quantity, which marks when to place the order to the supplier, is the sum of the
expected demand not covered by the reverse flows during the lead time, with the safety
stock for the desired service level 1 —a.

4 Conclusions

A Portuguese company in the energy sector posed a challenge that consisted in finding
the best acquisition plan for LPG cylinders. To answer this industrial challenge, three in-
ventory models with reverse flows were developed. These inventory models were imple-
mented in spreadsheets and were given to the company’s manager to be used as decision
support tools for acquisition planning.

The first model, model D, considers deterministic continuous constant replenishment
from returned LPG cylinders and also discrete batches of new cylinders that are bought
from the supplier. This model reflects the current situation of the company that is experi-
encing a considerable growth in their sales volume and whose demand is larger than the
incoming flow, i.e. A > u + d.

The second model, model R, considers the future situation of the company, for which
the returned cylinders cover for the demand, i.e. . < u +d. In this case replenishment from
the supplier will be unnecessary.
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The third model, model S, considers that both the demand and return rate are of stochas-
tic nature. In this case non deterministic inventory models should be adapted instead.
Model S was developed for a mixed scenario, regarding stochastic demand and return
rate, with continuous returns and periodic discrete acquisition of new cylinders from the
supplier. This last model is an approach that would better fit the particularities of the chal-
lenge proposed by this company.

As future work, results for each of the proposed inventory models, regarding real-world
scenarios reflecting the company’s possible situations, are to be obtained. The obtained
results will assist the company’s manager on planning the acquisition of LPG cylinders.
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