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reactivation of the virus as zoster, and exogeneous boosting of immunity. After
deriving the basic reproduction number Ry, the model is analysed mathematically
and the threshold dynamics is proven: if Ry < 1 then the virus will be eradicated, while
if Ry > 1 then an endemic equilibrium exists and the virus uniformly persists in the
population. Then we extend the model to include seasonality, and fit it to monthly
incidence data from Hungary. It is shown that besides the seasonality, the disease
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the model outputs to the system parameters and the underreporting ratio, and
provide estimates for Ry.
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1 Introduction

The varicella-zoster virus is a highly contagious disease that affects a huge proportion
of the population, consequently the varicella incidence is of a similar magnitude to the
number of births. Although most people contract the disease in their childhood, when the
symptoms are generally mild, complications may occur during the infection. Furthermore,
at an older age the risk of serious complications is significantly higher.

In many developed countries, varicella vaccination programs are already implemented.
Originally one-dose programs were introduced, which have been replaced by multiple-
dose vaccinations in some countries by now. In Hungary, vaccination is marketed for non-
routine use, and it has been made available free of charge in a few cities in recent years.
There are many country-specific studies regarding the effects and cost-effectiveness of the
introduction of varicella vaccination, e.g. [1, 3, 4, 11]. However, there are hardly any stud-
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ies about Hungary ([10] is a retrospective, descriptive study), where the introduction of
varicella vaccination into the routine childhood vaccination program is being introduced.
Given the actuality and the importance of this issue, here we summarize the challenges
of such a modeling work, draw some conclusions from the qualitative and experimental
study of simple compartmental models and devise a plan for comprehensive future work.

First we give a summary of the main issues of the modeling, then develop and inves-
tigate the qualitative properties of a simple autonomous compartmental model. Having
performed data analysis on the varicella incidence reports in Hungary (2010-2017), we
introduce seasonality (according to the academic year) in the model, and fit the system
parameters to the data set. We also perform parameter sensitivity analysis, and having
observed a strong underreporting, we study the sensitivity of system parameters to the
underreporting ratio. Finally, we will give a plan of our research of age-structured models.

2 Challenges in modeling
Below we summarize the major challenges for building a comprehensive varicella model,
some of them are specific to Hungary.

Latency of the virus and reactivation as zoster. Upon recovery from the varicella infec-
tion, VZV remains in the body in latent form. In general, the individual develops lifelong
immunity to VZV. This immunity usually prevents the reappearance of varicella, however
the immunity can wane over time, hence the virus may reactivate causing zoster (shingles).
Zoster infected people are also infectious, but at a lower rate than varicella infected per-
sons. Shingles cannot be passed from one person to another. However, VZV can spread
from a person with active shingles to cause chickenpox in someone who had never had
chickenpox or received chickenpox vaccine. The length and the efficacy of VZV immunity
can show a wide inter-individual variability. Hence the modeling must take into account
both the short period of infections (weeks) and long-time consequences (years), as well as
the age-structure of the population.

The hypothesis of exogenous boosting. The waning immunity against VZV can be boosted
if the individual has a contact with a VZV infected person. Although there is no clear pic-
ture concerning the degree of the boosting effect, the existence of the exogenous boosting
seems to be valid [8]. Assuming exogenous boosting, it is reasonable that after introducing
vaccination, the number of varicella cases decreases and consequently the zoster incidence
temporarily increases [1, 11].

Underreporting. In Hungary, monthly reporting of varicella cases to the public health
authorities is obligatory. Unfortunately, the varicella incidence appears to be much higher
than reported, since the annual birth number is about 2.5-times higher than the reported
varicella cases; and according to serological studies, these two values should be nearly
equal [11]. Among others, the main reason is that not every child is taken to the pediatri-
cian, as there is no effective medical treatment.

Seasonality. Available data also reflects a seasonal behavior in varicella incidence (see
Fig. 2). It can be traced back to the high number of infected children; consequently the
school term and vacation play an important role in the spread of VZV. To describe this
phenomenon, time-dependent contact rates are needed in the model.

Lack of zoster data. Contrary to varicella cases, it is not compulsory in Hungary to report
the zoster cases. Therefore, there is no available data related to zoster. One needs to make
assumptions, based on studies from other countries.
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Long term dynamics. Since we need predictions for many years ahead, an age-structured
model should handle the transitions between age cohorts, which makes it more difficult
than in models for single outbreaks, such as influenza with short-term behavior [7]. De-
mographic changes also need to be taken into consideration.

Vaccines are already present. Parents have the opportunity to buy the vaccine on the
market in Hungary. Some cities have made the vaccine available for free for local children.
Thus, a fraction of children have already been immunized. This certainly has some effect
on the model, but in this paper we do not take it into account.

Age structure. Since the virus is highly contagious and appears mainly among young chil-
dren, the transmission dynamics of the virus is largely age specific. Furthermore, varicella
has more severe symptoms and higher risk of complications at an older age, and reacti-
vation in the form of zoster also occurs at older age. Hence, age-structured models are
necessary to capture these phenomena.

Vaccination efficacy and waning. Since varicella vaccination was licensed in the mid-80s
in some European countries, the vaccine parameters are fairly reliable. In case of MMRV
vaccine, 65% of the vaccinated population acquires full protection after one dose and 95%
after the second dose. The vaccine-induced protection wanes in 15-20 years after one
dose; while the two-dose vaccination provides lifelong immunity [11].

Cost-benefit calculations. In 2017, [10] gave a comprehensive study on the economic
burden of varicella in Hungary using descriptive statistical methods. There are many
uncertainties related to the introduction of VZV-vaccination. Hence, detailed dynamic
model-based studies of the economic effects can be extremely useful.

In what follows we consider mathematical models that tackle some of these challenges,
such as virus reactivation and zoster, exogeneous boosting, strong seasonality in the data,
and the high underreporting.

3 Insights from a simple compartmental model

Based on the known models in the literature [1, 11], we use a simple compartmental system
in our studies with the compartments representing the varicella disease states: Suscepti-
ble, Exposed, Infectious, Recovered, Susceptible to Zoster, Zoster, Zoster Immune. Maternal
immunity is not taken into account in our model. Although the real situation is different
(see Sect. 4), for the sake of simplicity we assume that the birth and death rates are equal
(d). More precisely, we assume that individuals in each compartment die with rate d, and
also produce newborns with rate d (but all of these newborns appear in the susceptible
compartment). Under this assumption, the total population is constant and a proportional
model can be used where the total population is normalizedton =s+e+i+r+s,+z+r, = 1,
thus the model variables represent the fraction of the population being in the given epi-
demiological state at time £. We can illustrate the model with the compartmental diagram
Fig. 1.

The model is as follows:

s'=d-Ars—ds, S, =—0AS; +Lr—ns,—ds,,
€ =As—ce—de, i, =ns; — Kiy — diy,
i =ce—yi-di ¥, =Ki, —dry,

¥ =yi+oAs,—r—dr,
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Figure 1 The compartmental system illustrating the VZV model

where the variables s, ¢,i,7,s,,2, 1, are functions of the time ¢ measured in years, and (-)’
represents time derivative. The force of infection, meaning the rate at which susceptibles
acquire the infection is denoted by A = A(£) = B(i(¢) + vi,(¢)). Note that A = A(£) is not a con-
stant, as in our dynamical model the force of infection is changing in time, yet our system
(1) is not a non-autonomous system as A(z) is expressed by other model variables. New-
borns are assumed to be susceptible (hence the inflow into the s compartmentis d - n = d),
then, one can become infected upon adequate contact with a varicella or zoster infectious
person, with transmission rates 8 and v, respectively. Having been infected, individuals
go through a non-infectious latent period, and then they will be infectious. Following the
recovery, individuals acquire immunity to VZV. Immunity may wane, and then individ-
uals become susceptible to zoster. One can either be boosted through exposure to VZV
and regain immunity with efficiency o or become zoster infectious through reactivation
of VZV with the rate 1. Zoster recovered individuals have lifelong immunity to VZV. The
average length of time spent in the exposed, infectious, temporary immunity, and zoster

states are 71, y 1, ¢! and k7!, respectively.

3.1 The basic reproduction number R,

The basic reproduction number Ry is a key parameter regarding the level of contagious-
ness of the disease. It measures the transmission potential of the pathogen, and serves as
a threshold determining if the disease can invade the population or not. It is the average
number of secondary infections produced by a single infected individual introduced in a
fully susceptible population. Now, let us give the basic reproduction number intuitively.
The idea of this formulation lays on [12].

In case of VZV not only the primary varicella infections play a role in spreading the dis-
ease, but also the zoster patients can transmit the virus to susceptibles. Thus, the basic
reproduction number can be calculated as the sum of the average number of new infec-
tions produced by a varicella infected individual, plus the average number of new infec-
tions produced by this individual upon virus reactivation as a zoster infected individual,
factoring in the probability that the patient with the primary infection survives until VZV
reactivates as zoster. We denote these two values by Ry, and Ry, respectively. Hence,

R() = RO,V + RO,Z'
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Consider a person being in the Infected state, who transmits the disease to suscepti-
bles. The new infected individuals have to survive first the Exposed period and then get
into Infected state. We assume that the waiting times in each compartment are exponen-
tially distributed. Considering both the epidemiological and demographical movements,
the average time individuals spend in the Exposed state is ﬁ. Thus, the average fraction
surviving this period is —. Similarly, the average length of the time when individuals can
infect others in Infected state is ﬁ. The contact rate is 8. Hence, Ry, can be intuitively

calculated as the product of these values, i.e.,

€ 1

Ro,=B—— .
o 'Be+dy+d

A person being in the Zoster state also transmits the disease. Infected individual have to
survive not only the Exposed state, but also the Infectious, the Recovered and the Suscep-
tible to Zoster periods. Same as in the previous case, the average fraction to survive these
periods are ﬁ, c% and n'+_7d’ respectively. The average length of the time when individuals
can infect others in this state is ﬁ. It is assumed, that the infectiousness of zoster infected
individuals is proportional to the infectiousness of the varicella infected individuals with
a scaling factor v. So Ry, can be calculated as the product of these values, the fraction v

and the contact rate 8. Thus,

€yin 1
(e+d)y+d)+dn+d)x+d

RO,Z = 1)/3

Finally, we obtain

Be LB eygn @
(y+d)e+d)  (c+d) (e+d)(y+d) (¢ +d)(n+d)

Ry =

and the very same expression can be derived also from the next generation matrix ap-
proach. To make a clear-cut in the formulas, we use the following notations: € = € + d,

v=y+d,{=C+d,ii=n+dand & =« +d, and then

R _Pe vBeyin
0= =z~ t—=
€y

R epei

3.2 Qualitative analysis of equilibra

To analyze system (1), we consider only the biologically feasible region
A={(s,eirs,isr) €R, iste+itr+s,+i,+r,=1}.

By standard arguments, one can see that solutions of (1) with non-negative initial data
remain non-negative for all future time. Combining with s' + € + i’ + ¥ + s, + i, + 1, =
0, we obtain that the region A is positive invariant with respect to (1). Note also that
the solutions with given initial values are unique. Hence, the model is well-defined both

mathematically and epidemiologically.



Karsai et al. Journal of Mathematics in Industry (2020) 10:12 Page 6 of 16

3.2.1 The disease-free equilibrium

It is easy to see, that the point Py = (1,0,0,0,0,0,0) is an equilibrium—called disease-free
equilibrium—of the system (1). The biological meaning of this equilibrium is, that there
are only susceptibles and no infected individuals. The main result is as follows.

Theorem 1 The disease-free equilibrium is globally asymptotically stable if Ry < 1 and
unstable if Ry > 1.

Proof
First note that the reproduction number can be written in the following form:

_ BeREi+vyin

Ry = — =
Ve k&n

Then the inequality Ry < 1 is equivalent to
Bek il + Bevyin <kyELi.
System (1) can be written in the form &' = f(x), where x = (s, e, i, 7,5, i, ;) and f(x) is the
right side of the system.
To prove the stability of the disease-free equilibrium, following the method in [12] we

construct a Lyapunov function in several steps. Let the first function be a linear combina-
tion of e and i, namely

L =€e+Eéi.
Then

. oL -

L= <a—xl,f(x)> = ((0,6,6,0, 0,0, 0),f(x))
=ed +éi' =e(As—€ée) + é(ce—yi) = eAs — Vi
=eB(i +viy)s—€yi

Due to the structure of L the term €e€e is eliminated but the term € yi remains in L. Next,
we eliminate this term. Thus, we introduce L, = yL; + €yr. Then

Ly=ylL,+épr
=yeB(i+viy)s— yEPi+Epyi+EpoPli+viy)s, — EpLr
= yeBi + viy)s + €Yo Bli + viy)s, — EPLr.
Now, to eliminate the term €777, we take L3 = { L, + €7°Zs,. Its derivative is
Ly=¢Ly +éyes,
= CyePli+vic)s+CEPapli+ vi)s, — (EPTr—EpLopli+ vir)s, + EPLLr—EpLiys,

=CyeB(i+viy)s—deyoBi+ viy)s, — ~)7§f]sz.
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To eliminate the last term, we take Ly = nLs + € ¢ iji,, thus we get

La=nls+Epcii,
=nCyeBli+viy)s — ndefopli + viy)s, — néPLTs, + EPLims, — EPLRRi,
=n¢yepli+viy)s—ndeyop(i+viy)s, — g);gﬁ’zlz

Now, let L = Zijk (e + €i) + vL4 be the Lyapunov function, and we obtain

= ikt (ee + &) + iy

g:ﬁ/?( B +viy)s — eyl) +vnCyeBi+ viy)s — vndéyoBi + viy)s, — VEY L ik,
(

Ik + vney)eBi+ viy)s—¢ r]/cey(z +viy) —vndeyoB(i + viy)s,

= (i + vi,) (7K + vy y)eBs — €7 (L 7k + vndoBs.))
=(i+ viz)(B(Ros -1)- E?vndcﬁsz) < B(Rps — 1)(i + viy), (4)

where B = 7€k 7. Then L < 0 follows from Ry < 1, where equality holds only in two cases:
Ry =1 and the system is at the disease-free equilibrium (s = 1); or i = i, = 0. It can easily
be seen that the latter relation holds for all £ only if the system is at the disease free equi-
librium. Thus, the largest invariant set in L = is {Py}, and the first part of the theorem is
proven by LaSalle’s invariance principle.

Concerning the case Ry > 1, we have to observe that the characteristic polynomial of the
Jacobian of system (1) at the disease-free equilibrium takes the form

P(u) = (u5 +agu* + asu® + au® + aju + ao)(—d - u)?,
where ay =7 + 7 + 7+ & + € and ag = (1 — Ry)yL7jké < 0. Since P(0) < 0 and P(x) > 0 for
u large enough, there must exist a positive zero, i.e., a positive eigenvalue of the Jacobian,
that implies the instability of the disease-free equilibrium for Ry > 1. g

3.2.2 The endemic equilibrium
A point P* = (s*, €%, i*,r%,s},i5,r}) € A is an equilibrium if and only if the coordinates of P*
satisfies the following equations:

d—Xis—ds=0, (5)
As—ce—de=0, (6)
se—yi—di=0, 7)
yi+oAs,—{r—dr=0, (8)
—OAS; +{r—ns, —ds, =0, )
NS, — ki —di, =0, (10)

—dr, =0, (11)

We saw above, that there exists a unique disease-free equilibrium P, = (1,0,0,0,0,0,0),
if Ry < 1. An equilibrium P* = (s*,e*,i*,r%,s},i%,r}) € A is called endemic, if not only the
first element is positive. We can prove the following theorem:
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Theorem 2 If Ry > 1, then system (1) has a unique endemic equilibrium,
P* = (s*,e*,i*,r*,s;‘,i:,rj) e A.

In addition, s* is the unique solution in the interval (1/Ry, 1) of the equation Q(s) = 0, where

dr i R
- o (1_5)(ROS_1)_dﬂvno

Q) = 51— 9
B7

(Ros — 1)s. (12)

The other coordinates of P* satisfy the following equations:

d
e =—=(1-5%), (13)
€
ed
o€ 14
i ;75( s*) (14)
r* - %i* _ gsz’ (15)
kT
S5=—= Ros* —1), (16)
(¢ —C)ﬂvna( )
=g 17)
K
* K1 .
= —Lg* 1
rp= s (18)

Proof Our aim is to show that there exists a unique positive solution P* of equations (5)-
(11) whenever Ry > 1. The idea to show that lays on [12]. Using (5) and (7) we obtain
d —ds* — €e* = 0, which implies e* = g(l —s*). From equation (7), we have ee* — yi* = 0, so

%

i*=Lfef = %g(l —5*). Hence, €* and i* can be calculated provided that 0 < s* < 1 is given.

v
From equation (10) we gain ns} — i} = 0 thus if = 1s}. Combining this with equation

K ok KN ox

(11), we get r} = £ = ZLg*. Equations (9) and (8) imply yi* — dr* — 7js¥ = 0, thus r* =
getr; = 4 = 7Sz y 2

Yok _ ﬁ " ol ks . ok %
Zi* — Zs;. Hence, if s is given, i},r; and r* can be calculated.

Now, we only need to determine s* and s}. Since we are looking for an equilibrium point
in A, i.e., all derivatives are zero, the coordinates of P* make the value of L zero, where L.
is given in (4) (see (4) in the proof of Theorem 1). We obtain

(i* +vi}) (7ERC T (Ros™ — 1) — épvndopst) =0
We are looking for an interior point of A, consequently, i*, i} > 0. We gain
/?Eﬁ(RoS* - 1) —vndopBs; =0,

and then

* _ IZE?] *
s, = ondoB (Ros 1). (19)

It means, if we can find 0 < s* < 1, we can calculate s}, too. For determining these two
values, we are looking for further relations between s* and s}. The idea is, (i* + vi}) appears
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in several equations, so let solve these equations for (i* + vi}) in terms of s* and s}. From
equation (5), we obtain

1-s*

(20)
S*

ok s
L+, =

™|

Multiplying equations (8) and (9) by ¢ and ¢, respectively, and then adding them, we gain
y¢i*t —doB(i* +vil)st — igs; = 0. (21)

Similarly, multiplying equations (7) and (6) by € and €, respectively, and then adding them,
we obtain

eB(i* +vif) —éyi* =0,

and hence
. Be, )
= (" +vif)st. 22
i 5 (l wz)s (22)

Substituting (22) into (21), we obtain
(" +vif)doBs; = fCst Be (i v vir)s*
. Z—ngsz—yggy(z +vzz)s,
and so

Pt (23)

We found a second solution for i* + vi}. Note that, for all 0 < s*,s} < 1 the denominator of
the fraction on the right hand side is not zero because of (19).
Now, let us combine (20) and (23)

%(1 - s*) (y;;;ie st - doﬂsj) = ﬁ;:s;‘s*. (24)

Using the expression of s} from (19), we can write (24) in the following form:

d o[ YEBe 23] . - KCh
E(l—s)( ——5 _d'BGdJﬁvn(ROS _1)>_n§dﬂvno

(Ros* - l)s* =0,
which depends only on s*. Now, we can define the quadratic form Q:

5%k
dBvno

dycte
€y

(Ros —1)s.

Q) = E€ (1~ 95— TN (1 _ (s —1) -
Bvn

Clearly,

Q(i) = d’ffe (1— i>l > 0.
Ry 3% Ry /) Ro
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Furthermore,

. REi (bR
Q(l)——(Ro—1)<W+ dﬁm) <0

The intermediate value theorem guarantees that there exists s* € (%, 1) for which Q(s*) =
0. Moreover, this zero position is unique on the interval (%, 1) due to the concavity of
Q(s).

Finally, it is easy to verify that s* = 1 —e* —i* —r* — s} — i¥ — r}. The theorem is proved. [J

3.2.3 Disease persistence

We introduce the basic notions of persistence [14]. Let X be a nonempty set and p: X —
R,. A semiflow @: R, x X — X is called uniformly weakly p-persistent, if there exists
some ¢ > 0 such that limsup,_, ., p(P(¢,x)) > efor allx € X, p(x) > 0. @ is called uniformly
(strongly) p-persistent if there exists some ¢ > 0 such that liminf;_, ., p(®(t,x)) > efor allx €
X, p(x) >0. A set M C X is called weakly p-repelling if there is no x € X such that p(x) >0

and @ (t,x) — M as t — oo. System (1) generates a continuous flow on the phase space A.

Theorem 3 The susceptible population is always uniformly persistent. If Ry > 1, then the

disease uniformly persists in the population.

Proof From the inequality s’ > d — (8 + Bv + d)s we find liminf,_, o, s(¢) > d/(B + Bv + d),
hence the susceptible population is persistent.

Next, consider the persistence function p(x) = L(x), x € A, which is a linear combination
of the infected compartments e, i,7,s,,i,. Consider the invariant extinction space of p, a
collection of x € A with p(x) = 0, which is given by the subset of A with s+, = 1 and other
components are zero. On this extinction space, solutions converge to Py. Recall that

L=3G+ viz)(B(Ros -1)- E)?undaﬂsz),

from which it follows that P is weakly p-repelling whenever R, > 1, and by Theorem 8.17
of [14], we obtain weak persistence, and strong uniform persistence follows from Theo-
rem 4.5 of [14], since A is a compact set.

Ife(t) - Oast — oo, then from (i+r+s, +1i,) = ce—d(i+r+s, +1i,) it follows that all the
compartments i, 7, s, i, converge to zero as well, contradicting to the persistence of p = L.
Therefore e is uniformly weakly persistent, then similarly as above, e is uniformly strongly
persistent as well. Then from liminf;_, », i(£) > (liminf,_, », e(£)/(y +d), the uniform persis-
tence is inherited to the i compartment and respectively to r,s,, i, as well. We found that
all infected compartments are strongly uniformly persistent. O

4 Data analysis and model fitting
Annual Varicella incidence data for 20 years and monthly data since 2010 in Hungary were
available to us (red curves in Fig. 2 show the incidence corrected by the fitted underreport-
ing ratio g = 0.4).

Due to the strong seasonality of varicella, we replaced the constant 8 in the system by
a periodic function /§(t) = B(1 + beos(2mt — ¢)) with ¢ = 0.5 chosen by a separate fitting
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process according to the academic year. The seasonal system with parameters d birth-
death rate, B (transmission rate), b magnitude of seasonality was fitted to the monthly
data. In addition, based on our former arguments in Sect. 2, the underreporting ratio (g)
has to be also included into the fitting process.

Note that in our former studies [6], the parameters d and b were fixed, but these pa-
rameters are quite uncertain and it turned out that the model is very sensitive to these
parameters. Hence here they are also estimated by fitting.

Our methodology is the following. First we assign reasonable values to all the other pa-
rameters in the model, based on epidemiological evidence. Due to the lack of available
zoster incidence data from Hungary, related parameters were either adapted from the lit-
erature [1, 4, 11, 13] or assumed by expert opinion. Having most parameters fixed, we
performed the fitting for the key parameters q,d, b, 8. After that, we let all the parame-
ters (be previously fixed or fitted) vary in reasonable intervals to assess their impacts in a
sensitivity analysis.

It is known from epidemiological practice that the average length of time spent in the
exposed, infectious, and infectious zoster states are 14,7,9 days, respectively. Since these

L y1, k71, respectively, we may assume ¢ = 26, y = 52, and « = 40.

lengths (in years) are &~

The length of temporary immunity is estimated as 20 years, and hence ¢ = 0.05. Sim-
ilarly, the average length of being zoster susceptible is assumed 30-35 years, hence 1 =
0.003. These assumptions agree with the fact that zoster appears at elder ages.

Based on consultations with epidemiologists, the force of infection of zoster is much less
then that of varicella, hence v = 0.07 is assumed. Similarly, we may assume that strength
of boosting the immunity by zoster is somewhat weaker than by varicella, hence o = 0.7.
Our parameters are similar to those typically used in the literature [1, 4, 11, 13].

Finally, values of (s,e,i,r,s;,2,7,) at any time are not known, but we may assume that
varicella incidence is close to the equilibrium, hence initial values of the solutions of the
seasonal system were taken equal to the endemic equilibrium according to the values of
parameters.

Now, the fitting model is simple: the cumulative growth of i(¢) is measured by i(t) with
7(t) = se(t), and hence the monthly and annual incidences are modeled by MM(t) = q(f(t +
1/12) — i(t)) and AM(t) = q(i(t + 1) — i(£)), respectively. Obviously, i(t), i(£), MM(t) depend
also on the parameters g, d, b, 8. The model MM(¢) is fitted to the varicella incidence data
given monthly in the period 2010-2016 (79 months, 5 months are missing).

Fitting was performed by the sophisticated and well-tested command NonlinearMod-
elFit in Wolfram Mathematica 12.0, which can be applied to implicitly defined models such
as parametric numerical solutions of differential equations (ParametricNDSolve), and it
can measure the goodness of the fit. Default options and ConfidenceLevel — 0.95 were
used.

The goodness of the fit was measured by the adjusted R? = 0.929. The fitted values are
shown in Table 1 (at significance level: 95%).

Table 1 Results of the parameter fitting

Estimate Standard Error Confidence Interval
q 0405 0.024 [0.3571,0.4535]
d 0.01019 0.00045 [0.00929,0.01108]
b 0.24 0.02 [0.20,0.28]
B 745 50.52 [644, 846]
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Table 2 The asymptotic parameter correlation matrix

q d b B
q 1 -0.8202 -0.2387 0.1431
d -0.8202 1 -0.0278 -0.1826
b -0.2387 -0.0278 1 0.0767
B 0.1431 -0.1826 0.0767 1
Monthly incidence Annual incidence
0.20 12F
0.15 7 N P
08}
X 010 X o6t
04 Data
0.05
02F — Seasonal
000 L L L L 00 L L L
2010 2012 2014 2016 2010 2012 2014 2016
year year
Figure 2 Varicella incidences: data (red) and fitted model (blue)

The asymptotic parameter correlation matrix is shown in Table 2.

The result can be seen on Fig. 2. The monthly incidence data and fitted model MM(t)
can be found on the left side, while the right one contains the annual data and the fitted
model AM(t) as well as the corresponding autonomous model with the same parameters.
Finally, we emphasize that although the seasonality is very strong, both the monthly and
annual incidence models show a multi-annual periodicity. The yearly peaks have max-
ima approximately at every four years. This phenomenon is known in the epidemiology
of varicella and the value agrees the practice. The same period can be obtained by the

autonomous model.

5 Sensitivity analysis

5.1 Sensitivity to system parameters

Now, we present the results of our sensitivity of both the autonomous system (1) and its
seasonal version to the system parameters. Although most parameters were fixed before
fitting, here we study the sensitivity to all parameters.

Global sensitivity (all parameters may change simultaneously) of the system is inves-
tigated by the effective and widely accepted LHS/PRCC method (see [5]). We have also
investigated the sensitivity using other methods, for example using the differentiable de-
pendence of solutions of differential equation with respect to the parameters. These other
studies gave very similar results to the LHS/PRCC analysis.

Concerning both the original autonomous and the seasonal versions of (1), we inves-
tigate the sensitivity of it +1)-i() at t = 0,0.5,...4.5,5. The random sampling is taken
from the intervals:

d €[0.0093,0.011; B €[700,790]; €< [24,28];  y € [46,58];
Kk €[3545]; ¢ €[0.04,006]; oe€[0608]; vel[0.060.08];

n € [0.0025,0.0035]; b €10.2,0.3].
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Figure 3 Dependence of PRCC values on time of new varicella patients at the seasonal version of system (1)
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Figure 4 Maximal PRCC values (t € [0, 5]) of new varicella patients at the seasonal (left) and autonomous
(right) systems

The number of parameter samples is N = 500. The initial value of the solutions at every
parameter combination is the equilibrium of the autonomous system (1) with the fitted
parameters. Note that the partial derivatives of them with respect to the parameters are
sign-keeping on the given parameter-intervals.

PRCC coefficients are determined at ¢ = 0,0.5,1,...,5. The dependence of most sen-
sitive parameters with respect to the time at the seasonal system can be seen on Fig. 3.
Coefficient with largest absolute values at every parameter are shown on Fig. 4. The val-
ues explain the choice of parameters d, 8, b in the fitting. Sensitivity is also high to & and
v, but they could be determined from the epidemiological literature. For reference, we
present the PRCC values of i(£ +1) —i(t) of the original autonomous system (1).

Finally, investigate the sensitivity of basic reproduction number R, of the autonomous
system (1). The PRCC coefficients for Ry are (N = 1000) can be seen in Fig. 5. It is ob-
vious that Ry is highly sensitive to zoster related parameters, but since no zoster report
are available, the uncertainties of their estimates explain the uncertainties of Ry. See the
country-wise difference in [9]. We consider another aspect in the next section.

5.2 Sensitivity to underreporting ratio
According to the previous section, varicella cases are likely to be seriously underreported
in Hungary (g ~ 0.4). The model fitting is coherent with what the serological studies sug-
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Figure 5 PRCC coefficiens for Ry of the
autonomous system (1)

-1.0 -0.5 0.0 0.5 1.0
20F
14.56 19pamnmm
— Reported
= 93.02 % infected (fitted)
. — [90%,95 %] infected
x 10t

8.93 pm------- .
1

1

1

1

5¢ i

1

1

1

1

1

1

| il | | | |
0.35 0.4 0.45 0.5 0.55

Hungary
q

Figure 6 Relation between the underreporting ratio g and the basic reproduction number

gest. In this section we investigate, how sensitive our model is to the ratio of the reported
and total cases, i.e., we examine dependence of the basic reproduction number Ry (see
eqn. (2)) on this ratio g at the parameters fitted above.

Assuming that the population is at the endemic equilibrium in Hungary, the following
equality holds:

nvlg =yi',

where ny is the annual reported varicella incidence and i* is the endemic equilibrium of
i and 1/y is the mean length of the varicella infection. Taking the formula for i* from
(12) and (14) and the fitted parameter values given in the previous section, we obtain the
following relation between g and Ry

n, 0.2989 0.03606 0.00508
— =-0.01700 —0.0296 )2 + - +0.01068.
q Ry Ry Ry

The result is depicted in Fig. 6 with different values of n,. We can see, that Ry is very
sensitive to the change of g at low values, such as around the fitted g = 0.405. Considering
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n, = 0.003658 the mean annual incidence since 2010 to 2017, the corresponding Ry = 8.93
(see the red curve). Estimating 7, by the formula n, = gdp, where p is the infected fraction
of the total population, we obtain the value p &~ 0.886 what looks underestimated compar-
ing to the observation from serological studies that 90-95% of the population becomes
infected.

On the other hand, Ry = 14.56 (obtained from the fitted parameters) provides n, =
0.003837, that gives p = 0.9302 of the Hungarian population is infected, agreeing with
the above mentioned observation (see the blue curve).

Finally, considering p € [0.9,0.95] we obtain the estimation 10.13 < R, < 20.45
(turquoise bounded gray region).

Note that in the literature a wide variety of different R, values can be found for the VZV.
In [9], the highest value is 16.91 (Netherlands) and the lowest is 3.31 (Italy). Knowing the
parameters in these countries, estimation on the underreporting can also be given.

6 Conclusion

Motivated by the ongoing introduction of VZV vaccination into the routine immuniza-
tion schedule, we gave an overview of the of the current varicella transmission dynamics
in Hungary. After summarizing the modelling challenges, first we investigated the quali-
tative properties of the compartmental model (1), which is a variant of the model studied
in [12]. Providing a similar analysis as in [12], we derived the basic reproduction number
and proved its threshold property: for Ry < 1 we showed the global asymptotic stability
of the disease-free equilibrium, while for Ry > 1 a unique endemic equilibrium exists and
the disease is uniformly persistent in the population. Since we had monthly data available
from Hungary, showing strong seasonality in disease prevalence, we extended our model
with seasonal (time periodic with period one year) disease transmission. We fitted the sea-
sonal version of system (1) to the available data, and found that the strong seasonality of
varicella infections and the underreporting are essential factors to be considered in vari-
cella modelling. The model also reproduced the multi-annual cycles observed in varicella
dynamics. We performed a sensitivity analysis to see which parameters are the most im-
portant in the output of the model. We found strong sensitivity of Ry with respect to the
underreporting ratio, which can be an explanation to the wide range of basic reproduction
numbers estimated in different studies.

The long term aim of our research is to forecast and evaluate the impact of vaccination
in Hungary. Introducing VZV vaccination is expected to significantly reduce the number
of varicella infections, but it has some negative effects such as the average age at infection
is increasing thus conferring higher risks of complications, and a temporarily increase in
the number of zoster cases is also expected due to the reduced boosting effect if less VZV
is in circulation. WHO recommendations that countries which decide to introduce the
varicella vaccination assess the disease burden caused by varicella and continue surveil-
lance after the introduction of vaccination [15], thus we plan to continue our work to this
directions. Based on our simple model the global effects and strategic goals can be already
visible. To build a realistic model which can be used to evaluate the impact of vaccination
policies, our model should be significantly extended by an other modelling arm represent-
ing vaccinated compartments, the parameters and the specifics of the given vaccination
strategy, seasonal effects, and detailed age structure with age specific parameters and con-
tact patterns.
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