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Abstract
Laser-induced thermotherapy (LITT) is a minimally invasive method causing tumor
destruction due to heat ablation and coagulative effects. Computer simulations can
play an important role to assist physicians with the planning and monitoring of the
treatment. Our recent study with ex-vivo porcine livers has shown that the
vaporization of the water in the tissue must be taken into account when modeling
LITT. We extend the model used for simulating LITT to account for vaporization using
two different approaches. Results obtained with these new models are then
compared with the measurements from the original study.
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1 Introduction
Thermal ablation methods briefly generate cytotoxic temperatures in tumorous tissue in
order to destroy it. These minimally invasive methods are used for treating cancer, e.g., in
lung, liver, or prostate, when surgical resection is either not possible or too dangerous for
the patient. All of these methods utilize the fact that tumorous tissue is more susceptible
to heat than healthy tissue to destroy as little healthy tissue as possible. Among the most
common thermal ablation methods are LITT, radio-frequency ablation, and microwave
ablation.

The principle of LITT [1] is based on the local supply of energy via an optical fiber,
located in a water-cooled applicator. This applicator is placed directly into the tumorous
tissue. The LITT treatment can take place under MRI control because the laser applicator
is sourced by an optical fiber and does not include any metal parts. Therefore the patient
is not exposed to radiation, in contrast to other treatments that can only be carried out
under CT control.

For the therapy planning of LITT, accurate numerical simulations are needed to guide
the practitioner in deciding when to stop the treatment. Mathematical models for this
have been proposed, e.g., in [2, 3]. The liver consists of about 80% water which vaporizes
if the temperatures during the treatment become sufficiently large. The vaporization of
this water is currently not included in these models but our study in [4, 5] suggests that

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13362-020-00082-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13362-020-00082-4&domain=pdf
http://orcid.org/0000-0001-8936-9805
mailto:christian.leithaeuser@itwm.fraunhofer.de


Blauth et al. Journal of Mathematics in Industry           (2020) 10:16 Page 2 of 16

this effect is relevant for an accurate simulation. In this study the ex-vivo experiments with
a larger power of 34 W show a good agreement between measured and simulated temper-
ature until the temperature reaches approximately 100◦C. Then, the measured tempera-
ture stagnates while the simulated one rises further (cf. [4], Fig. 3). We presume that this
happens due to phase change of water which was not included in the model we used.

In this paper we use the measurements from [4] and compare two models for the va-
porization. One of them is the effective specific heat (ESH) model introduced in [6] which
modifies the specific heat coefficient to account for the phase change. The other one is the
enthalpy model which uses an additional state equation to model the phase transition. We
compare the models to experimental data with ex-vivo porcine livers from [4].

Of course the presence of vapor makes the situation far more complicated. The vapor
expands, pressure builds up and the vapor has its own dynamics within the tissue. Once
the vapor reaches a cooler region it may condensate again. There are many approaches
studying this in detail [7, 8]. The drawback of course is that such a detailed approach makes
the model far more complex, at the costs of computational time, and introduces new tissue
dependent parameters, which may not be easily available. Therefore, in this study we use
and extremly simplified approach to model the vapor which was proposed by [6] and does
not include any physically motivated transport mechanism for the vapor. One purpose of
this study is to investigate if this simplified approach may be sufficient for modeling LITT
or if more advanced models are necessary to account for the vapor (see also Remark 2).

This paper is structured as follows. Our existing mathematical model for simulating
LITT including heat and radiative transfer is described in Sect. 2. This model is based on
the work of [2] and we have also used it in [4]. In Sect. 3 we modify and extend this model in
such a way that it also covers the effect of vaporization during the treatment. Therefore,
we consider both the ESH model of [6] as well as an enthalpy model for vaporization.
Afterwards, we present the details of the numerical solution of our models in Sect. 4.
Finally, the models are validated with measurement data obtained from experiments made
with ex-vivo porcine liver tissue (cf. [4]) in Sect. 5.

2 Mathematical model
We denote by Ω ⊂ R

3 the geometry of the liver and by Γ = ∂Ω its boundary. The latter
consists of the radiating surface of the adjacent applicator Γrad, the cooled surface of the
applicator Γcool, and the ambient surface of the liver Γamb (see Fig. 1). The mathematical
model is described by a system of partial differential equations (PDEs) for the heat transfer
inside the liver, the radiative transfer from the applicator into the liver tissue, and a model
for tissue damage (cf. [2–4]).

2.1 Heat transfer
The heat transfer in the liver tissue is modeled by the well-known bio-heat equation (cf.
[9])

ρCp
∂T
∂t

– ∇ · (κ∇T) + ξb(T – Tb) = Qrad in (0, τ ) × Ω ,

T(0, ·) = Tinit in Ω ,
(1)

where T = T(x, t) denotes the temperature of the tissue, depending on the position x ∈ Ω

and the time t ∈ (0, τ ). Here, the end time of the simulation is denoted by τ > 0. Further,
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Figure 1 Sketch of the geometry including the
water-cooled applicator with radiating laser fiber

Cp is the specific heat capacity, ρ the density of the tissue, and κ the thermal conductivity.
The perfusion rate due to blood flow is denoted by ξb and the blood temperature by Tb.
Note that in the current ex-vivo study the perfusion rate ξb is set to zero. Finally, Qrad

is the energy source term due to the irradiation of the laser fiber and the initial tissue
temperature distribution is given by Tinit.

For the heat transfer between the tissue and its surroundings, given by the ambient sur-
face and the applicator, the following Robin type boundary conditions are used

κ∂nT = αcool(Tcool – T) on (0, τ ) × (Γrad ∪ Γcool),

κ∂nT = αamb(Tamb – T) on (0, τ ) × Γamb.

Here, n is the outer unit normal vector on Γ . Additionally, αcool and αamb are the heat
transfer coefficients for the water-cooled part of the applicator and the surroundings of
the liver, respectively. The temperature of the cooling water is denoted by Tcool and Tamb

is the ambient temperature.

Remark 1 Please note that the temperature Tcool of the water coolant is assumed to be
known and constant in this study. This is of course a simplification because the cooling
water is heated up on its way through the applicator. However, measurements of the cool-
ing temperature before and after the applicator in [4, Fig. 2] show that the temperature of
the coolant does not increase by more than 5◦C. Therefore, setting Tcool to the measured
inlet coolant temperature should approximate the problem. Of course it is also possible to
model the flow through the applicator in detail as done in [2].

We come back to this bio-heat equation in Sect. 3, where we modify it such that it also
covers the effect of vaporization of water in the tissue. The radiative source term Qrad is
defined in the next section by (5).

2.2 Radiative transfer
The irradiation of laser light is modeled by the radiative transfer equation

s · ∇I + (μa + μs)I =
μs

4π

∫
S2

P
(
s · s′)I

(
s′, x

)
ds′ in S2 × Ω , (2)

where the radiative intensity I = I(s, x) depends on a direction s ∈ S2 on the (unit) sphere
and the position x ∈ Ω , and μa and μs are the absorption and scattering coefficients, re-
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spectively. In particular, as that radiative transfer happens significantly faster than temper-
ature transfer, we neglect the time-dependence and use this quasi-stationary model. The
scattering phase function P(s · s′) is given by the Henyey-Greenstein term which reads (cf.
[10])

P
(
s · s′) =

1 – g2

(1 + g2 – 2g(s · s′))3/2 .

Here, g ∈ [–1, 1] is the so-called anisotropy factor that describes backward scattering for
g = –1, isotropic scattering in case g = 0 and forward scattering for g = 1.

Due to the high dimensionality of the radiative transfer equation (2), we use the so-called
P1-approximation to model the radiative energy, the details of which can be found, e.g., in
[11]. Introducing the ansatz

I(s, x) = φ(x) + 3s · q(x),

where q(x) = 1
4π

∫
S2 I(s, x)s ds is radiative flux vector, one obtains the much simpler three-

dimensional diffusion equation

–∇ · (D∇ϕ) + μaϕ = 0 in Ω , (3)

where ϕ = ϕ(x) is the radiative energy and the diffusion coefficient D is given by

D =
1

3(μa + (1 – g)μs)
.

To derive the boundary conditions we use Marshak’s procedure as described in, e.g.,
[11]. We obtain Robin type boundary conditions

D
∂ϕ

∂n
=

qapp

AΓrad

on Γrad, D
∂ϕ

∂n
+ bϕ = 0 on (Γcool ∪ Γamb), (4)

where qapp is the laser power entering the tissue and AΓrad the surface area of the radiating
part of the applicator. The former can be written as

qapp(t) =

⎧⎨
⎩

(1 – βq)q̂ if ton ≤ t ≤ toff,

0 otherwise,

where q̂ is the configured laser power and the factor (1 – βq) models the absorption of
energy by the coolant (cf. [4]). Moreover, the parameter b in (4) is given as b = 0.5 on Γamb

and b = 0 on Γcool. From the numerical point of view the system given by (3) and (4) is
much easier to solve than the original system given by (2). Finally, the radiative energy is
used to define the source term for the bio-heat equation in the following way

Qrad(x) = μaϕ(x). (5)
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2.3 Tissue damage and its influence on optical parameters
The optical parameters μa, μs and g are very sensitive to changes of tissue’s state. In par-
ticular, once the coagulation of cells starts, their optical parameters change and, as a result,
the radiation cannot enter the tissue as deeply as before. Therefore, we model the damage
of the tissue as in, e.g., [2, 3] with the help of the Arrhenius law, which is given by

ω(t, x) =
∫ t

0
A exp

(
–

Ea

RT(s, x)

)
ds, (6)

with so-called frequency factor A, activation energy Ea, and universal gas constant R. This
describes the change of optical parameters due to coagulation in the following way

μa = μan +
(
1 – e–ω

)
(μac – μan),

μs = μsn +
(
1 – e–ω

)
(μsc – μsn),

g = gn +
(
1 – e–ω

)
(gc – gn),

where the subscripts n and c indicate properties of native and coagulated tissue, respec-
tively (cf. [2]).

3 Mathematical modeling of vaporization
Vaporization of water inside organic materials plays an important role in many different
fields, e.g., in medicine or the food industry. To model the temperature distribution in such
materials correctly, it is important to take the vaporization into account as a significant
amount of energy is necessary for the phase transition from water to vapor. The basic
principle is the following (see, e.g., [12]). If energy in the form of heat is added to water
(under constant pressure), the water’s temperature increases as long as it is below the
vaporization temperature, i.e., below 100◦C. However, as soon as the water reaches this
temperature, the temperature does not increase further, although heat is still added to
the water. At this point, the water starts to boil and eventually vaporizes after a sufficient
amount of energy was added to it. Finally, the temperature of the emerging water vapor
increases again after all water has been vaporized. This happens due to the fact that the
energy added to the water at its boiling point is used to change its phase and not to increase
its temperature, until all water is vaporized.

In the following, we discuss two vaporization models. First, we take a look at the effec-
tive specific heat (ESH) model introduced in [6] which uses a varying specific heat capacity
to model the phase change. In this model the phase transition is spread over a reasonably
small interval around 100◦C. This simplification makes it possible to model the phase tran-
sition using a single PDE. Second, we propose an enthalpy model with an additional state
equation for the enthalpy. For this model, the transition happens at a single temperature,
namely at 100◦C.

3.1 The effective specific heat (ESH) model
The ESH model introduced in [6] considers the following modified bio-heat equation

ρCp
∂T
∂t

– ∇ · (κ∇T) + ξb(T – Tb) = Qrad – Qvap + Qcond in (0, τ ) × Ω , (7)
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with the same initial and boundary conditions as (1). Here, Qvap is a source term that
models the vaporization of water and Qcond is the source term for the condensation (see
Sect. 3.2). In [6] this has the following form

Qvap = –λ
dW
dt

, (8)

where λ denotes the latent heat of water and W is the tissue water density. Using the chain
rule we see that

dW
dt

=
∂W
∂T

∂T
∂t

.

Substituting this into (8) and (7) gives the following modified heat equation

ρC′
p
∂T
∂t

– ∇ · (κ∇T) + ξb(T – Tb) = Qrad + Qcond in (0, τ ) × Ω ,

where the effective specific heat capacity C′
p is given by

C′
p = Cp –

λ

ρ

∂W
∂T

.

Since ∂W
∂T < 0 for vaporization (the water content decreases with temperature), we have

that C′
p ≥ Cp.

Based on experiments that measured water content of bovine liver as a function of tem-
perature in [13] the following function is used to describe the tissue water density (cf.
[6, 13])

W (T) = 800 ·

⎧⎪⎪⎨
⎪⎪⎩

(1 – e T–106
3.42 ) if T ≤ 103◦C,

S(T) if 103◦C < T ≤ 104◦C,

e– T–80
34.37 if 104◦C ≤ T ,

where S(T) is the cubic C1 spline that interpolates between the two exponential functions,
(approximately) given by

S(T) = 3.712982 × 102 T3 – 11.47524 T2 + 1.182046 × 103 T – 4.058214 × 104.

The function W and its derivative are depicted in Fig. 2. In particular, we get that
the effective specific heat is very large in an area around 100◦C. Therefore, it holds
that

∂T
∂t


 1 for T around 100◦C,

which models the vaporization of the tissue water.
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Figure 2 FunctionW(T ) and derivative dW
dT (T ) of tissue water density from [6]

3.2 Simple condensation model for ESH model
In [6] it is discussed that, in addition to the vaporization of water, one also needs to con-
sider the effect of condensation of the water vapor in order to obtain an accurate model.
There, it was assumed that the water vapor diffuses into a region of lesser temperatures
where it condensates and releases its latent heat obtained through the vaporization. The
authors of [6] describe their model for this in the following way. They say that they first
calculate the total amount of water that was vaporized in the last time step. From this,
the amount of latent heat generated is computed. Finally, this is added uniformly to the
tissue region whose temperature is between 60◦C and 80◦C. We have implemented this
simple condensation model in the following way. We compute the total amount of latent
heat which is currently consumed through the vaporization of water by

Q̄vap =
∫

Ω

Qvap dx,

where [Q̄vap] = W. Additionally, we define the condensation region as

Ωcond :=
{

x ∈ Ω | T– ≤ T ≤ T+}
,

for given temperature boundaries T– < T+ < 100◦C. Uniformly distributing Q̄vap over the
condensation region then yields the condensation source term

Qcond(x) =

⎧⎨
⎩

Q̄vap
vol(Ωcond) if x ∈ Ωcond and vol(Ωcond) > 0,

0 otherwise.

In particular, this implies that our model is energy conserving. This is of course a very
rough condensation model because there is no real transport mechanism for the vapor
involved at all. Any vapor will instantaneously condensate in another region with lower
temperature. This simple model shows promising results but there is also room for im-
provement as discussed in Sect. 5.4.

Remark 2 Clearly this approach for dealing with the vapor is a severe simplification of
what actually happens: the expanding vapor builds up pressure and moves through the
tissue, thus adding a fluid dynamical component to the problem. The vapor transport in
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the simple model is purely artificial and not motivated by physics. The trade-off is between
a very simple model and a more accurate one which is also far more complex. One goal
of this study is to investigate if the simple model may be sufficient for LITT or if more
advanced models for the vapor are needed [7, 8].

3.3 Enthalpy model
In the this section, we present the details of the second model for vaporization, which is
based on an enthalpy formulation. It consists of two coupled equations, one for the tem-
perature of the tissue and one for its enthalpy. For the temperature, we have the following,
modified bio-heat equation

ρCp
∂T
∂t

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇ · (κ∇T) + ξ (Tb – T) + Qrad + Qcond if T < 100◦C or T ≥ 100◦C

and H = ρλvap,

0 if T = 100◦C

and 0 ≤ H < ρλvap,

(9)

where λvap = 0.8λ is the proportion of the enthalpy of vaporization corresponding to the
tissue’s water content of 80%. Further, the (volumetric) enthalpy of the water H , [H] =
J m–3, is modeled by the following ODE

∂H
∂t

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if T < 100◦C or T ≥ 100◦C

and H = ρλvap,

∇ · (κ∇T) + ξ (Tb – T) + Qrad if T = 100◦C

and 0 ≤ H < ρλvap.

(10)

Equation (9) has the same initial and boundary conditions as (1), and the initial condi-
tion of the enthalpy is given by H = 0 in Ω , i.e., no vaporization had happened before the
treatment. The term Qcond describes a heat source due to the condensation of water va-
por in regions with temperatures below 100◦C, similar to the one of the ESH model (cf.
Sect. 3.2). Observe that the modified bio-heat equation (9) coincides with the classical bio-
heat equation (1) and we also have H = 0, i.e., no vaporization is happening, as long as we
have that T < 100◦C everywhere. This changes as soon as T = 100◦C at some point x̄ ∈ Ω .
Then, we see that the bio-heat equation (9) gives ∂T

∂t (x̄) = 0 and, therefore, T(x̄) = 100◦C in
case 0 ≤ H(x̄) < ρλvap, i.e., the temperature at a point does not change until the enthalpy
exceeds the enthalpy of vaporization ρλvap. In the meantime, the energy that would usu-
ally lead to an increase in temperature now only increases the enthalpy, which models
the phase change of the water in the tissue. Finally, as soon as the enthalpy reaches the
enthalpy of vaporization, all water is vaporized and the bio-heat equation is valid again.

3.4 Simple condensation model for enthalpy model
Similar to Sect. 3.2 the simple condensation model suggested in [6] is used. In contrast
to the ESH model, the total amount of latent heat can be computed from the change of
enthalpy in the following way

Q̄vap =
∫

Ω

∂H
∂t

dx. (11)



Blauth et al. Journal of Mathematics in Industry           (2020) 10:16 Page 9 of 16

Again, the condensation region is defined by

Ωcond =
{

x ∈ Ω | T– ≤ T ≤ T+}
,

and the condensation source term is

Qcond(x) =

⎧⎨
⎩

Q̄vap
vol(Ωcond) if x ∈ Ωcond and vol(Ωcond) > 0,

0 otherwise,

where vol(Ωcond) denotes the volume of Ωcond. With this, we get that the temperature
increase due to condensation corresponds to the energy used to change the phase of the
water, uniformly distributed over Ωcond. Finally, note that the numerical discretization of
this model is described in Sect. 4.2.

4 Numerical methods
In this section, we detail the numerical methods used to discretize and solve the governing
equations.

4.1 Numerical solution of the governing PDEs
The mathematical model for radiative heat transfer and the models for vaporization de-
scribed above were used to simulate the behavior of ex-vivo porcine liver tissue during
LITT. The computational geometry was generated using Open Cascade (Open Cascade
SAS, Guyancourt, France) and the mesh was created with the help of GMSH, version
2.11.0 (cf. [14]). The governing equations were solved with the finite element method in
Python, version 2.7, using the package FEniCS, version 2017.2 (cf. [15, 16]). For the nu-
merical solution of the PDEs, we first (semi-)discretize the bio-heat equation in time using
the implicit Euler method. Then, we use piecewise linear Lagrange elements for the spa-
tial discretization of the temperature and radiative energy. The resulting sequence of linear
systems was then solved with the help of PETSc (cf. [17]), where we used the conjugate
gradient method with a relative tolerance of 1 × 10–10. Afterwards, the damage function
is computed using a right-hand Riemann sum to discretize the time integral of (6).

4.2 Discretization of the enthalpy model
In the following we describe our discretization of the enthalpy model. In particular, to
compute the temperature distribution from time t to t +�t we proceed as follows. We first
solve (3) to obtain the radiative energy at t + �t. With this, we compute the temperature
distribution at t +�t from (1). Subsequently, we iterate over the nodes of the finite element
mesh and check, whether the temperature exceeds 100◦C. At these nodes, the temperature
is set to 100◦C and from the excess temperature we compute the corresponding increase
in enthalpy. If the enthalpy surpasses the limit of ρλvap, we return this surplus in the form
of heat to the corresponding nodes. After doing so, we integrate the (local) changes in
enthalpy over Ω to compute the total change of enthalpy �H . Therefore, we can now
compute the source term Q̄vap of (11) as follows

Q̄vap =
�H
�t

,
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which is then used as the source term for the next time step, simulating the release of
enthalpy by the condensation of the water vapor. Then, the new tissue damage is computed
from (6) and the procedure is continued until we reach the end time τ .

5 Results and discussion
We use the experiments from the study of [4] to test the vaporization models. In this study
LITT was applied to ex-vivo porcine livers and the resulting temperature was measured
with a probe. The experiment was repeated nine times with different laser powers and
different flow rates for the applicator cooling system. For the study in [4], the authors used
the mathematical model introduced in Sect. 2 which was derived from the one presented
in [2]. However, the model did not take into account the vaporization of water in the tis-
sue. While the general agreement between experiment and simulation was good, there
were notably two outliers, namely the cases P34F47 and P34F70, for which the highest
laser power was used. For these cases, the simulated probe temperature would rise to well
above 100◦C, while the measured probe temperature would reach a plateau below 100◦C.
Therefore, in [4] the authors suspected that the missing vaporization model was the reason
for this discrepancy. Now, we test this hypothesis by repeating the simulations with the
previously introduced modified models that now include vaporization and condensation
effects.

5.1 Experimental setting
For the validation of our models, we use the measurements from the experiments made in
[4]. For these, livers were obtained from pigs which had been slaughtered approximately 6
hours prior to the experiment. The temperature of the samples was room temperature at
the beginning of the experiments. A laser applicator from Somatex® Medical Technologies
(Teltow, Germany) was placed into the middle of the liver sample. An optical fiber from
the same company with a diffuser part of 3 cm at its tip was inserted into the applicator for
delivering the laser energy from a Nd:YAG laser device (MY30; Martin Medizintechnik,
Tuttlingen, Germany; wavelength 1064 nm) to the tissue. The applicator was equipped
with a cooling water circulation system to protect the optical fiber and prevent the burn-
ing of tissue in close proximity to the applicator. A temperature probe was introduced
into the porcine liver and placed close to the applicator in order to generate temperature
measurements for validating the models of LITT.

The setup for the nine test cases is shown in Table 1. The laser was applied with different
powers, namely 22, 28, and 34 W, and different flow rates of the applicator cooling system.
However, it is assumed that the effect of the coolant flow rate is negligible (cf. [4]). Further-
more, the position of the temperature probe is characterized by its radial distance dr to the
applicator axis as well as its distance dz from the applicator tip, where the applicator itself
is contained in the half space with z ≥ 0. We now simulate this experiment again using
the vaporization models introduced previously, and compare the results with the mea-
surement data as well as with the results obtained by the original model which does not
consider vaporization. The optical, thermal, and damage parameters used for the simula-
tion are listed in Table 2. They are taken from [4] and the references therein (cf. [18–21]).
For the condensation region Ωcond we have chosen the points where the temperature was
between T– = 60◦C and T+ = 80◦C, as proposed in [6].



Blauth et al. Journal of Mathematics in Industry           (2020) 10:16 Page 11 of 16

Table 1 Experimental setup for nine test cases (from [4])

Case label P22F47 P22F70 P22F92 P28F47 P28F70 P28F92 P34F47 P34F70 P34F92

Laser Power [W]
-Measured q̂app 22.1 22.1 22.1 28.0 28.0 28.0 33.8 33.8 33.8

Coolant V̇ [ml/min] 47.2 69.9 91.7 47.5 70.3 91.8 47.2 70.4 92.2

Time [s]
-Laser on ton 24 30 36 18 30 60 18 24 48
-Laser off toff 1266 1236 684 942 1722 1098 1206 948 1182
-End tend 1284 1248 702 954 1734 1116 1218 972 1206

Probe Position [mm]
-Radial dr 10.1 11.4 9.2 13.5 13.7 11.1 11.2 9.9 9.6
-Axis-direction dz 12.6 25.7 20.9 21.0 7.5 10.1 23.8 26.3 35.3

Table 2 Physical parameters for LITT in ex-vivo porcine liver tissue

Parameter Value

Optical (native):
Absorption coefficient μan [m–1] 50
Scattering coefficient μsn [m–1] 8000
Anisotropy factor gn 0.97

Optical (coagulated):
Absorption coefficient μac [m–1] 60
Scattering coefficient μsc [m–1] 30,000
Anisotropy factor gc 0.95

Thermal:
Heat conductivity κ [W m–1 K–1] 0.518
Heat capacity Cp [J kg–1 K–1] 3640
Tissue density ρ [kg m–3] 1137
Heat transfer coefficient αcool [W m–2 K–1] 250
Heat transfer coefficient αamb [W m–2 K–1] 44

Damage:
Damage rate constant A [s–1] 3.1× 1098

Damage activation energy Ea [J mol–1 K–1] 6.3× 105

Universal gas constant R [J mol–1 K–1] 8.31

Vaporization:
Latent heat of water λ [J kg–1] 2257× 103

Figure 3 Comparison of the models for the case
P34F47

5.2 The case P34F47
Let us start the investigation of the vaporization models with the test case P34F47 of [4],
where a laser power of 34 W was used. The results for this case are shown in Fig. 3, where
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Figure 4 Difference between simulated and
measured temperature for the case P34F47

the measurement from the temperature probe, the results for the model of [4] and the
results for both vaporization models of Sect. 3 are shown. For this specific case, the probe
temperature simulated without a vaporization model rises well above 100◦C while the
measured temperature reaches a plateau below 100◦C (see Fig. 3). In contrast, both va-
porization models do not overestimate the temperature to the end of the treatment and
predict the occurring plateau correctly. This is further visualized in Fig. 4, where the dif-
ference of the models from the measurement over the entire treatment is depicted. These
results show that all models are reasonably close to the measured temperature until up to
about 80◦C. After that point the model without vaporization overestimates the temper-
ature significantly. The models that include vaporization give considerably better results
since their predicted temperatures match the measured ones more closely throughout the
whole treatment.

5.3 All nine test cases
After investigating the vaporization models in the context of the previous test case, where
the original model without vaporization of [2, 4] failed to predict the correct tempera-
tures, we now investigate the other test cases from the study of [4]. The corresponding
results are shown in Fig. 5, where the measured and simulated temperature at the probe
is shown, and Fig. 6, which visualizes the difference of the simulated temperatures to the
measurement. In general, the vaporization models are good in estimating the final tem-
perature of the experiment. Especially for the cases P34F47 and P34F70, which could not
be simulated accurately in [4], the vaporization model performs significantly better and
does not overestimate the temperature to the end of the treatment. However, during the
middle of the experiment the vaporization models tend to overestimate the temperatures.
This can be seen, e.g., for the cases P22F70 and P28F70 (cf. Fig. 5). We suspect that the
simple condensation model is responsible for this discrepancy as we explain in Sect. 5.4.

Altogether, the ESH and the enthalpy model both show comparable but slightly different
temperature curves. Especially the overestimation of the temperature during the middle
of the experiment is usually higher for the enthalpy model. To compensate one could think
about adjusting parameters, like the exact amount of water in the liver tissue. However, a
first step should be to improve the simple condensation model.

5.4 Discussion of the simple condensation model
The consideration behind the simple condensation model described in Sects. 3.2 and 3.4
is solely to preserve the conservation of energy. Therefore, all the water which was vapor-
ized at a certain time is assumed to instantaneously condensate in the condensation region
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Figure 5 Comparison of the models with temperature measurements

Figure 6 Difference between simulated and measured temperature
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Figure 7 Sensitivities with respect to the choice of the condensation region Ωcond = {x ∈ Ω | T– ≤ T ≤ T+}

Ωcond = {x ∈ Ω | T– ≤ T ≤ T+}. This consideration is strictly global and does not involve
any form of transport mechanism for the vapor. Hence, it is possible that vapor which was
generated in one region can instantaneously condensate in another region. Through this
mechanism temperature can be shifted from one region to another without any delay. This
effect is possibly the reason for the overestimated temperatures during the middle of the
experiment. This can be seen, e.g., for the case P28F70 (cf. Fig. 6), where all simulated tem-
peratures are the same until about 400 s into the experiment. At that point the simulated
temperatures rise much faster for the models that include vaporization than for the one
without it. We suspect that at this point of the experiment, vaporization occurs in tissue
close to the applicator. Due to the instantaneous transport mechanism of the simplified
condensation model heat is then added to regions further away from the applicator, where
the applicator is placed. This results in the non-physical temperature increase that can be
seen in this case. Additionally the simple condensation model is also rather sensitive with
respect to the choice of the condensation region as can be seen in Fig. 7, where the tem-
perature at the probe for the case P34F47 is shown for the condensation region given by
T– = 60◦C and T+ = 80◦C in Fig. 7(a) as well as for T– = 70◦C and T+ = 90◦C in Fig. 7(b).

To resolve this issue, the transport of vapor within the tissue must be taken into account.
This could for example be done by adding an additional diffusion equation similar to the
bio-heat equation to the state system. Therefore, an effective diffusion coefficient for the
vapor must be known or estimated from measurements. Alternatively, a more complex
solution would be to model the tissue as porous medium and to use a pressure based
formulation for the vapor transport.

6 Conclusion
LITT is a minimally-invasive method in the field of interventional oncology used for treat-
ing liver cancer. Mathematical modeling and computer simulation are important features
for treatment planning and simulating the necrosis of the tissue. The numerical simulation
is in good agreement with temperature measurements for ex-vivo porcine liver. In particu-
lar, the incorporation of vaporization of water in liver tissue improves the simulation. Still
a refinement of the simple and artificial model for the vapor might be necessary. Due to its
global nature, this model allows for an undelayed flow of temperature from a hot region
to a colder one. This is probably the reason for the overestimated temperatures during
the middle of the experiments. An additional physically motivated transport meachanism
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for the vapor might be necessary. In order to use simulations for the monitoring and as-
sistance during the treatment of humans it is important to model the blood perfusion,
because blood vessels have a significant cooling effect. One approach can be to identify
the blood perfusion rate from MR thermometry during the beginning of the treatment
and use this information to correctly simulate the remaining treatment (cf. [22]).
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