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coronavirus-2019/situation-reports). The Johns Hopkins University (github.com/
CSSEGISandData/COVID-19/blob/master/csse_COVID_19_data/csse_COVID_19_
time_series/time_series_COVID19_confirmed_global.csv) collects those data from
various sources worldwide on a daily basis. For Germany, the Robert-Koch-Institute
(RKI) also issues daily reports on the current number of infections and infection
related fatal cases (www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/
Situationsberichte/Gesamt.html). However, due to delays in the data collection, the
data from RKl always lags behind those reported by Johns Hopkins. In this work we
present an extended SEIRD-model to describe the disease dynamics in Germany. The
parameter values are identified by matching the model output to the officially
reported cases. An additional parameter to capture the influence of unidentified
cases is also included in the model.
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There’s an evil virus that’s threatening
mankind [...]
A menace to society

Iron Maiden, Virus, 1996.

1 Introduction

In December 2019, first cases of a novel pneumonia of unknown cause were reported from
Wauhan, the seventh-largest city in China. In the meantime, these cases have been identi-
fied as infections with a novel strain of coronavirus, called SARS-CoV-2 and the disease it
causes is called coronavirus disease 2019 (COVID-19). At the beginning of January 2020,
the virus spread over mainland China and reached other provinces. Increased travel ac-
tivities due to the Chinese new year festivities supported the expansion of the infection.
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Figure 1 Case numbers in Germany from 1 March until 7 April 2020, as reported by Johns Hopkins
University [5]. The initial time point is chosen as 1 March, since then the number of registered infections
exceeds 100 cases

Since 21 January, WHO’s daily situation reports contain the latest figures on confirmed
cases and deaths, see [1].

The first COVID-19 case in Germany was reported in late January 2020 in a company
close to Munich, Bavaria. Later cases were imported by travelers from China, Iran or Italy
as well as tourists returning from ski holidays in the Austria and Italy. By 1 March 2020
more than 100 cases were reported in Germany and since than the number of cases began
to rise exponentially, see Fig. 1. The first deaths were reported on 9 March 2020 [2, 3].

By 16 March 2020 the federal government introduced first measures to reduce the
spread of the disease: Schools, kindergartens and universities were closed. On 22 March
these measures were tightened by implementing a national curfew and contact ban. People
are advised to stay at home, leaving only for work related activities, necessary shopping,
medical treatment or sports. All this should not be done in groups of more than two per-
sons if they do not belong to the same household [4].

Our work is based on the data reported by Johns Hopkins University [5]. We refrain
from using the official data from the Robert-Koch-Institute [2], since they suffer from a
delay by several days due to the more complicate way of aggregating those data. For a de-
tailed explanation of the difference between the data reported by Johns Hopkins and the
Robert-Koch Institute we refer to the information given on the webpage of the Robert-
Koch-Institute, see [6]. Johns Hopkins University continuously collects the data from in-
ternet queries at various sources (local health authorities, newspapers, etc.) whereas the
Robert-Koch-Institutes collects the data that are reported for the local health authorities
to the district level, then state level and finally aggregates them to the federal statistics.
Hence these data lag several days behind the ones collected by Johns Hopkins University.

The paper is organized as follows: In Sect. 2 we describe the model and the param-
eter identification problem. Our models consists of three variants of a five compart-
ment SEIRD-system without demographic terms, where the transmission rate is either
fixed (1a)—(le) or time-dependent (3a)—(3e) and (4a)—(4e). The fatalities are either de-
scribed by an ODE, see models (1a)—(1e) and (3a)—(3e), or via a delay term in model (4a)—
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Figure 2 Transmission diagram for the basic SEIRD-model (1a)-(1e). The artificial compartment C contains all
infected cases, i.e. current active infections, recovered and deaths

(4e). In the parameter estimation problem, we determine the transmission rate, detection
rate and lethality together with the initial values for the exposed and infected compart-
ment. In Sect. 3 we discuss the sensitivity of our model with respect to detection rate.
Section 4 is devoted to the adjoint equations used for solving the optimization problem.
The simulation results are presented in Sect. 5. Here we do compare the results obtained
from the three models presented in Sect. 2.

2 Mathematical model
To model the dynamics of the spread of COVID-19 incidences, we propose a hierarchy of
SEIRD models. For details regarding the original SIR- and SEIR-model we refer to clas-
sical works on mathematical epidemiology, e.g [7]. For our basic SEIRD-model, the total
population of Germany with N ~ 83.000.000 individuals is subdivided in to susceptibles S,
exposed E, infected I, recovered R and deaths D. The susceptibles constitute the reservoir
of persons that are not yet infected with SARS-CoV-2. After infection susceptible become
exposed meaning that they already carry the virus but are not yet infectious. With a rate
¥ exposed individuals become infectious and transmit the virus with rate 8 to suscepti-
bles. An infected individual loses infectivity with y and has a probability u of dying due
to the disease [8]. Figure 2 shows the transmission structure. By C we denote all infected
cases, independent of their current status. This artificial compartment is later on used to
compare with the total number of registered cases reported by Johns Hopkins or RKI.
The resulting system of ordinary differential equations (ODE) for the above described
SEIRD-model reads as

s B

©__Pg, to) = So := N = Eo I, 1
r NS S(to) = So o—1o (1a)
dE B

— =8I - E, E :E, 1
P NS s (to) = Eo (1b)
dl

T Z9E-yI,  It) =1l 1
a7 Y (to) =1Io (1c)
dR

d—=(1—ﬂ)'yf, R(ty) =0, (1d)
t

dD

vl D) =0. 1
TR (to) =0 (Le)

The starting time ¢, is chosen as 1 March and the initial conditions for the recovered
and dead compartment are assumed to be zero, since in Germany the first COVID-19



Go6tz and Heidrich Journal of Mathematics in Industry (2020) 10:20 Page 4 of 13

30

251

n
o
T

Doubling time T, [days]
> &

0 . . . . . .
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Transmission rate 3

Figure 3 Plot of the doubling time T, in days versus the transmission rate 8 for fixed values ¥ = 1/2 and
y =1/10. A reduction of the transmission rate from 8 = 0.8 to 8 = 0.2 accounts for a slow down of the
infection from doubling time 2 days to 10 days

related death was recorded on 9 March. Also we may assume that the number of recovered
individuals by 1 March is negligible.

In the sequel, we will also consider two refined versions of the above basic model.

At the onset of the disease, the numbers of exposed, infected, recovered and dead are
still small and the number of susceptibles is approximately equal to the entire population
N. In this setting, the EI-part of the model reduces to

(- 2)6)

The maximal eigenvalue X of this linear system determines the initial growth rate and is
given by

A= %(—(z?+y)+ (19—y)2+419,3)

and the doubling time T, equals

Figure 3 depicts the dependence of the doubling time on the transmission rate 8. As of
mid April, the doubling time in Germany is approximately 14 days compared to 2.5 days
by mid March.

In the basic model (1a)—(1e), the transmission rate 8 is assumed to be fixed. The German
state and federal governments introduced several measures to slow down the spread of the
disease. Similar measures are nowadays taken in almost every country worldwide. As of
16 March schools, kindergartens and universities were closed and on 22 March a general
contact ban was enforced in Germany. Both measures aim at reducing the transmission
rate .
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To include this into the basic model (1a)—(1e), we also consider an alternative model
for the transmission rate 8: We assume S as a piecewise constant function on the time
intervals prior to any measures, (until 15 March), after school closings (between 16 and
22 March) and after the contact ban (after March 22)

Bo t< 16 March,
B(t)=1B1 16March <t < 22 March, 2)
B> t> 22 March.

The resulting time-dependent SEIRD-model reads as

as__po

@ _ I, to) =So:=N—Ey— Iy, 3
I NS S(to) = So o—1o (3a)
dE  B(2)

— =——8I-VE, E(ty) = Ey, 3b
TN (to) = Eo (3b)
dal

ZOE-yI,  I(t) = o, 3
ot 4 (to) =1Io (30
dR

P (1—p) v, R(ty) =0, (3d)
t

dD

_— = . 1, Dt =O. 3
Ry (to) (3e)

Setting B := By = B1 = Ba, the time-dependent model reduces to the basic one.

In order to validate our models and to identify the parameters involved therein, both the
registered number of infections and the registered number of COVID-19 related deaths
are important indications. The number of registered deaths is probably considerably more
reliable, since the number of registered infections depends on the number of tests con-
ducted and the dark figure of undetected, mostly asymptomatic cases, is assumed to be
remarkably large [9]. We will discuss this point later in more detail. In the previous basic
or time-dependent SEIRD-model, the actual increase of the disease related deaths "Zl—? is
assumed to be proportional to the current number of infected persons. The Robert-Koch-
Institute specifies an average of 10 days between the onset of symptoms and admission to
the intensive care unit [10]. Therefore, we assume t = 14 for the time between the onset
of infectiousness and death. In order to include this time lag into our model, we introduce

a delay-term into the time-dependent model and obtain the final delayed time-dependent

model:
as
E = —%Sl, S(to) = S() 2=N—Eo —I(), (43)
dE
i %S[— VE, E(to) = Ey, (4b)
% =09E - y[(l — ) + pd(t - r)], 1(s) = Ip(s) fors <o, (4c)
dR
T (1-p)-vL, R(to) = 0, (4d)
d
DL yle-v, D=0, (de)

dt
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Note, that for solving this delay differential equation (DDE) we need an initial history of
the infected compartment, i.e. values Iy(s) for o — 7 < s < t,.

In all the three models, the parameters ¢ = 1/2 [days™'], y = 1/10 [days™!] are assume to
be fixed and resemble a latency period of 2 days and a recovery period of 10 days, see [2,
Situation report 31 March 2020].

The parameters in the transmission rate, i.e. 8, or By, 1, B2 the lethality . and the initial
values Ey, Iy resp. the initial history Iy(s) for the exposed and infected compartment are
yet unknown to us. We will identify them together with the detection rate 5 by matching
the model output to the given data. The detection rate § corresponds to the fraction of
infected individuals which are positively tested for SARS-CoV-2 and hence appear in the
official recordings. Various sources speculate that this detection rate is in the order of
magnitude of 10-20% meaning that the true number of infected 5-10 times larger than
the number published in the official statistics, see [9].

To match the model output and the reported data we use a least-squares approach. Let
u=(8,8,u,Eo, o) resp. u = (Bo, B1, B2,8, i, Eo, Iy) denote the unknown model parameters
to be determined. Furthermore, let Y(¢) and Z(¢) denote the data for the cumulated in-
fected and dead cases at time ¢ reported by Johns Hopkins University. The deviation be-
tween the model and the data is measured by the cost functional

_I8U+R)+D-Y|%,  |D-Z|2

2
+c1 +colul|
Y17, 1Z112,

= ”Y”Z (H8(1+R) +D— Y||i2 + leD_Z”iz + 602||M||2), (5)
L2

where |12, := ftOTF“ f(t)? dt denotes the square of the L2-norm of the function f on the

Y12

interval [to, Trit] and wq = 01# as well as wy = Cz||Y||%2. For the given data we have
12

1Y), ~1.2- 10" and [|Z]?, ~ 6.5 - 10% hence w; =~ ¢; - 185. The cumulated infected

Y, i.e. total positive tests, are to be matched in the SEIRD-model to those individuals who
had been infected until time ¢, i.e. the sum of the infected I, recovered R and deaths D. To
account for the uncertainty in the frue number of infected and recovered cases, we mul-
tiply both compartments by the detection rate §, which is itself part of the parameters to
be identified. For the deaths we assume no undetected cases. By Tr we denote the time
horizon used for the comparison between the model and the data. The regularization term
w;||u]|? is included to ensure the convexity of the cost-functional. The weighting param-
eters ¢;, ¢, and hence w;, w; > 0 allow to balance the contributions from the least squares
error in the fatalities and from the size of the parameter values themselves to the least
squares error in the infected cases. The weight c; for the fatal cases allows to compensate
the different order of magnitude between the infected cases and the fatal cases, typically
¢1 =~ 2-3 leading to w; >~ 500. The weight ¢, is chosen small, such that the overall cost
functional is still dominated by the least square fit between the model output and the
given data.

The parameters u* themselves are obtained from minimization problem
min/(u) subject to one of the ODE-systems (1a)—(1e), (3a)—(3e) or (4a)—(4e). (6a)
u

u* = argmin J (). (6b)

u
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3 Afew analytical considerations

Due to the absence of demographic terms, our basic model (1a)—(1e) does not allow other
equilibria besides the trivial disease free equilibrium X° = (N,0,0,0,0). Since we focus
only on the short-time behavior of the epidemics, demographic terms are excluded and
equilibria do not play any important role.

An important issue is the question of wether we can identify the detection rate and
lethality during the take-off period of the epidemics? The only data available for parameter
identification are the total number of registered cases C = I + R + D and the deaths D. The
total registered cases heavily depend on the number of tests conducted. If a person is
infected, but not tested, this person will not appear in the official statistics. Hence, there is
a presumably large dark figure in the officially recorded data. Our model parameter § takes
this into account. The other, maybe more reliable, available data are the recorded deaths.
Here we may assume that all COVID-19 related deaths are diagnosed and hence there is
no dark figure in the D-compartment. A recent analysis by the Federal Statistical Office
on the excess mortality in Germany for March and April 2020 confirms this assumption,
see [11]. For other countries this assumption might be questionable, since they suffered
from major COVID-19 outbreaks in care homes that did not enter the official statistics,
e.g. in the UK, see [12].

However, one scenario could be possible. A large dark figure in the entire cases, i.e. a
small detection rate § and a very small lethality could result in the same or at least similar
observed data as a moderate or even small dark figure and hence large detection rate §
combined with a higher lethality rate. In that setting a simultaneous identification of both,
the detection rate § and the lethality u could be difficult due to their counteracting effects.

In order to investigate this scenario, we consider the simultaneous effect of the detection
rate § scaling both the initial values of the E and I compartment to account for undetected
cases together with a lethality §u.. Removing the S-compartment by setting S =N —-E -1 —
R - D, the basic SEIRD-system (1a)—(1le) reads as

% - %(N—E—I—R—D)I—ws, E(to) = Eo/5,
A _SE_ vl It0) = Lo/,

dt

-y R@w=0,

d—D =éu-yl, D(ty) = 0.

dt

The sensitivities Xr := 0sE and X}, X, Xp of the solution with respect to the detection
rate satisfy the system

;= é(N-Js—zl—R-D)E, — 9 XE - E1(25+ e+ ),

N N (7a)
Yr(to) = —Eo/8%,
S =90Zp-yZ, (ko) = —1/8%, (7b)
r=0=8u)y X —pyl, Xr(to) =0, (7¢)

2L =8py X+ pyl, Xp(tp) =0. (7d)
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Figure 4 Relative sensitivities of C (left) and D (right) with respect to the detection rate § for § =0.1 (blue
solid), 6 = 0.2 (red dashed) and § = 0.33 (green dash-dotted). At the onset of the epidemics, the sensitivities
are extremely small, hence no reliable identification of & is possible

In Fig. 4 we show the relative sensitivities X/C and X/D for detection rates § = 0.1,0.2
and 0.33. The chosen initial values are Ey = 150 and Iy = 100 (detected) cases at day 0. All
other parameters resemble the assumed values for Germany. Note, that at the onset of the
epidemics, i.e. in case of § = 0.1 for ¢ < 30 and for § = 0.2,0.33 even for ¢ < 40, the sensitiv-
ities are very small and hence the solution of the SEIR-model is almost independent of the
particular value of the detection rate §. Hence § cannot be identified from the observed
data in a reliable manner.

To illustrate these findings, we consider a linearization of a simplified SIR-model dur-
ing the initial phase of the epidemics. We neglect the exposed compartment and assume
that at the initial phase, the number of susceptibles is approximately equal to the entire
population. Hence we get the linear system

A 1
1(0) = < 1o,
© =5k

D(0)=0

I'=B-yi

D' =suyl,
with the solution

f)(t;a) = %(e(ﬁfy)t _ 1)10

In this linearized setting, the approximation D for the dead compartment is independent
of the detection rate 4.

From the graphs in Fig. 4 one can conclude, the a significant dependence of the detected
or dead compartment C resp. D is given only after the initial take-off period of the epi-
demic. In the setting of Germany, this implies, that during the month of March a reliable
identification to the detection rate might not be possible.

4 Adjoint equations and optimization
In order to solve the minimization problem (6a)—(6b), we use the adjoint equations, for
details see [13, 14]. We introduce the Lagrangian

Trit

L(t,x,u,z) =] (u) + /

to

T dx
z(t) (g(t, X, U) — E) dt.

Page 8 of 13
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Here z = (zs, z£, z1, zr, zp) denotes the adjoint functions to the state variable x = (S, E, I, R, D)
and g(t, x, u) denotes the right hand side of the ODE resp. DDE system. The gradient of £

with respect to the unknown parameters u is given by

L 1 [T gp(t

— =208+ — 'B()SI(zE—zs)dt, i=0,1,2

0B; N Ji 9B;

aL 2 Trit

—:2628+—2/ (I+R)[5(I+R)+D—Y]dt,

94 1Y 1172 Je

oL Trit

— =2cu + / vi(zp — z1) dt,

8,u to

oL

9E, = 2¢oEp + z£(to) — zs(to),

oL

— =2c21p + z1(to) — zs(to).

aly
Note, that in the case 8 = By = B1 = B we have %(;) = 1. By adding the time delay, we
obtain

oL Trit

— =2cu + / yI(z; — zg) + yI(t — T)(zp — z;) dt.

al'l' to

The adjoint system reads as

dzs  B(t)

S P 1 — zp),

- N (zs — zE)

dz,

d_tE = ¥z — 2r),

dz;  p(t)

— = TS(zs—zlg) + vz —zr + ulzr — 2p)| - W[6(1+R) +D-Y],
d 26

Er 2 [sU+R+D-Y],

dt Y17,

d 2 2

B = [U+R+D-Y]- —2(D-2).
dt Y17, IZ117,

supplemented by the terminal condition (zs, zg, 21, zr, 2p)(TEit) = 0. In the case of the time

delay we receive

d. 8
% = %S(ZS—ZE) + (1= pu)y(z —zz) - ”;T;[8(1+R) +D-Y]

+uy [zt + 1) =2t + 1) - Xito, Te—r1 (8)-

Here x4 (t) denotes the characteristic function of the interval [a,b], ie. we define
Xapb)(t) =1 for ¢ € [a,b] and = 0 otherwise.

To solve the optimization problem (6a)—(6b) numerically, we apply the Forward-
Backward Sweep method [13] combined with a Quasi-Newton method (BFGS) [15].
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In each iteration step the ODEs and DDEs of the state variables and adjoint equations
are solved with Runge—Kutta methods before the corresponding gradient and direction
of descent can be determined. The algorithm stops as soon as the termination condition
T (ttxes1) = J(ur)|| < TOL is fulfilled.

As initial values we use 8 = By = 1 = B2 = 0.3 for the transmission rate. This is justified
by the fact that an average Basic Reproduction Number of about R = 3 is assumed and
in our basic model we have

Epidemiologically, Ry indicates the number of new infections an infected individual
causes during the infectious period in an otherwise susceptible population. For the sake
of simplicity, we assume the same starting value for / and E,. This corresponds to the
value at the first data point of our measurement, i.e. 130 registered infected persons on
1st March. As already mentioned, we assume that for the recovered and deaths at this
time Ry = Dy = 0 holds. The possible problems with the optimization of § and u were al-
ready mentioned in the previous section. To increase the probability of generating a global
minimum, we use 7 = 1000 normally distributed start values for both parameters fulfilling
8 ~ N(0.25,0.25%) and u ~ N(0.03,0.03%) with 8, > 0. The algorithm selects the best
result of these n data fits. The reason for this is the assumption that the proportion of de-
tected cases is between 1-50% and the lethality below 6%. For the case fatality rate u we
have

V4

SUESE
Rreported/8 +Z

(@)

<IN

where Ryeported Stands for the reported recovered at time T;c. The approach for this esti-
mation can be found in [10]. The smaller the detection rate §, the lower the upper bound
for the case fatality gets.

In case of the time delay we choose as initial history for s € [£y — T, #]

I(s) = Iyexp <— ln(i).l) (s— t0)> )

This is justified by the fact that the number of registered cases has increased tenfold during

this period and we assume an exponential growth in this time span.

5 Simulation results
To estimate the unknown parameters u, we match the data reported on a daily basis by
Johns Hopkins [5] to our simulation results for a time period starting on 1 March.

The first results in Fig. 5 show a parameter estimation using the basic model (1a)—(1e)
and the time period before the onset of any containment measures, i.e. before the closing
of schools on 16 March. We fitted the parameters 8, § and p along with the initial values
Ey and I over the time period 1 March to 16 March. The initial values E, and I are also
subject to fitting, since the official data does not provide information about the active
infections at a given day. The weight w; = 1 to keep the cost functional dominated by
the two least square errors. The other weight is chosen as w; = 500 to compensate the
significantly smaller value of the least square error in the fatal cases.
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Figure 5 Fit of the basic model (1a)-(1e) to the data for the period 1 March to 16 March, i.e. before the onset
of containment measures

Table 1 Optimal parameter values for the three models (1a)-(1e), (3a)-(3e) and (4a)-(4e) obtained
from the minimization problem (6a)—(6b)

Parameter ,30 ) 12 Eo+1lp ,31 ﬂz L2-diff
Fit until Model

16.03.20 basic 0.566 0372 0.0034 418 - - 03771
07.04.20 time-dep 0523 0.308 0.0087 659 0.3561 0.1788 02721
07.04.20 delay 0.553 0.202 0.0389 930 03578 0.1415 0.2242

For the given time period of the fit, the model prediction and the observed data are
in good accordance. The estimated parameter values are given in Table 1. The detection
rate was estimated as § = 0.37 implying that the true number of infections exceeds the
registered cases by a factor 3. The transmission rate g = 0.57 accounts for a doubling time
of 2.6 days at the initial, uncontrolled phase of the epidemic in Germany.

In Fig. 6 we show the results obtained with the time-dependent model (3a)—(3e). In this
case, the fitting period equals to the entire simulation period starting from 1 March to 7
April. The weights w;, w, are identical to the previous simulation. The obtained transmis-
sion rate and according doubling times change from B, = 0.5232 and T5(8,) = 2.8 days at
the initial uncontrolled phase to 8, = 0.18 and £,(8;) = 11.4 days after the contact ban has
been introduced. The effect of the contact ban effectively reduces the transmission rate by
a factor of about 3 and significantly slows down the speed of the epidemics by increasing
the doubling time by a factor 4.

In Fig. 7 we show the result obtained with the delay model (4a)—(4e). For the delay model,
we assume a delay of 14 days between entering the class of infected and death. Again, we
show the simulation results compared to the reported cases for the infections and deaths.
Quite good agreement is found between the model and the simulation for both, infections
and deaths. Compared to the time-dependent model, shown in Fig. 6, the delay model
agrees better in particular for the fatal cases. In Table 1 we have listed the estimated param-
eter values in for the three models. We have also included the normalized L-difference
between the simulation outcome and the given data, i.e. the first two summands from the
cost fuctional (5). A ¢-test revealed that the deviations of the simulation to the reported
data is not normal distributed at a significance level of 5%.

In the simulations the detection rate is found to be 20-40%, indicating that the true
number of SARS-CoV-2 infections might be 3—5 times higher that the officially recorded
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Figure 6 Fit of the time-dependent model (3a)—(3e) to the data for the period 1 March to 7 April
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Figure 7 Fit of the delay model (4a)-(4e) to the data for the period 1 March to 7 April

data suggest. The lethality rate is found to be rather small, taking into account the large
number of true cases.

Comparing the obtained values for the lethality, the value for the delay-model seems to
be most realistic, since in this model we compare the fatal cases today to the infections
that occurred two weeks ago. The two other models related the fatal cases of today to the
infected cases today, hence to a significantly larger number. Therefore in these to models,

the lethality rate seems to be smaller.

6 Conclusions and outlook

We present three SIR-based models for describing the outbreak of the SARS-CoV-2 out-
break in Germany. Besides a standard SEIR-model, we consider an extension taking into
account the effect of social distancing by a time-dependent reduction of the transmission
rate. The third model introduces a delay-term to accurately describe the deaths depend-
ing on infected cases that occurred several days in the past. Comparing the simulation
results to the data published by Johns Hopkins University allows an estimation of the un-
known model parameters. Best results are obtained using the delay equation model. In
this setting, we find a detection rate of about 20% and a lethality of about 4%. The so-
cial distancing measures were leading to an effective reduction of the transmission rate by
a factor 4. That is, after the introduction of the measures roughly just 25% of the social

contact compared to the initial period were leading to infections.
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