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Abstract
In this paper an efficient and reliable method for stochastic yield estimation is
presented. Since one main challenge of uncertainty quantification is the
computational feasibility, we propose a hybrid approach where most of the Monte
Carlo sample points are evaluated with a surrogate model, and only a few sample
points are reevaluated with the original high fidelity model. Gaussian process
regression is a non-intrusive method which is used to build the surrogate model.
Without many prerequisites, this gives us not only an approximation of the function
value, but also an error indicator that we can use to decide whether a sample point
should be reevaluated or not. For two benchmark problems, a dielectrical waveguide
and a lowpass filter, the proposed methods outperform classic approaches.
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1 Introduction
In mass production of electrical devices, e.g. antennas or filters, often one has to deal
with uncertainties in the manufacturing process. These uncertainties may lead to devia-
tions in important parameters, e.g. geometrical or material parameters. Those may lead
to rejections due to malfunctioning. In this context, the quantification of uncertainty and
its impact plays an important role, also with regard to later optimization. According to
Graeb [1, Chap. 2] we define the yield as the percentage of realizations in a manufactur-
ing process, which fulfills performance feature specifications. When dealing with elec-
tromagnetism, the performance feature specifications are requirements involving partial
differential equations (PDEs) describing the electromagnetic fields, i.e., Maxwell’s equa-
tions. These can be solved numerically, e.g. with the finite element method (FEM). The
most straightforward approach for yield estimation is the Monte Carlo (MC) analysis [2,
Chap. 5]. The space of the uncertain parameters is sampled and the performance feature
specifications are tested for each sample point. This requires typically many evaluations
of the underlying PDEs. Thus, the computational effort is one main challenge of yield es-
timation.
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Over the last decades, various methods have been developed with the aim of reducing
the computational effort of MC. One approach to achieve this is to reduce the number
of sample points, e.g. by Importance Sampling (IS) [2, Chap. 5.4]. Another approach is to
reduce the effort for each sample point, e.g. by using surrogate based approaches [3–5].
The cost for building most surrogate models increases rapidly with the number of uncer-
tain parameters. Furthermore, there are counter examples where the yield estimator fails
drastically, even though the surrogate model seems highly accurate, measured by classi-
cal norms or pointwise [6]. Therefore the same authors propose a hybrid approach. They
focus their attention on critical sample points that are close to the limit state function,
which is the limit between sample points fulfilling and not fulfilling the performance fea-
ture specifications. Critical sample points are evaluated on the original high fidelity model,
while the other sample points that are far from the limit state function are evaluated only
on a surrogate model. Because of this distinction, which leads to a combination of different
model types, it is called a hybrid approach. Here, the choice of the surrogate model and the
definition of close and far are crucial. In [7], a hybrid approach is proposed, using radial
basis functions (RBF) for the surrogate model and an adjoint error indicator to choose the
critical sample points. In [8] a similar hybrid approach is proposed, using stochastic col-
location with polynomial basis functions and also an adjoint error indicator. In this paper
we combine these ideas and propose a hybrid approach using Gaussian process regression
(GPR) for both, building the surrogate model and obtaining an error indicator in form of
the prediction standard deviation given by the GPR. The critical sample points are used to
improve the GPR model adaptively during the estimation process. Further we investigate
if sorting the sample points can increase the efficiency.

Other research related to GPR based surrogate models for yield or failure probability
estimation is conducted in [9–12]. In [9] various sorting strategies for GPR model train-
ing data are described and compared. In [10], the authors concentrate on the calculation
of small failure probabilities with a limited number of function evaluations on the high fi-
delity model. They also use an adaptive GPR surrogate model, but do not combine it with
a hybrid approach and therefore have no critical sample points that could be used to im-
prove the GPR model. Instead, they distinguish between the sample points generated by
Subset Simulation (Sequential MC) for error probability estimation and those generated as
training data using a Stepwise Uncertainty Reduction technique to refine the GPR model
adaptively. In [11] and [12], a GPR based surrogate model approach is combined with IS.
Again, no hybrid approach is used. Adaptively, GPR model and IS density are improved by
adding one or more sample points from the MC sample of the last iteration to the train-
ing data set, which are selected by a learning function and then calculated on the high
fidelity model. On the contrary, in practice it is often assumed that the design parameter
deviations are small in a way that a linearization is valid [13, Online Help: Yield Analysis
Overview]. This approach is obviously very efficient but it is very difficult to determine on
beforehand if the assumption is valid.

The paper is structured as follows. After setting up the problem, in Sect. 3 existing ap-
proaches and the concept of GPR are briefly described. Then the use of GPR for yield
estimation, also in combination with a hybrid approach, is discussed. In Sect. 4, numeri-
cal results are presented using a benchmark problem, a simple waveguide, and a practical
example, a low pass filter calculated with CST, before the paper is concluded in Sect. 5.
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2 Problem setting
Even though the proposed ideas are generally applicable, in the following we will focus
on problems from the electrical engineering where electromagnetic field simulations are
necessary. This is the case, for example, when designing antennas or filters. Depending
on the frequency, e.g. the electric field can be calculated to retrieve information about
the performance of the device. Then the performance can be optimized by adapting the
design. In order to calculate the electric field on a simply connected bounded domain D,
we start from Maxwell’s formulation

∇ × (
μ–1∇ × Eω

)
– ω2εEω = jωJ on D,

where Eω = Eω(x, p) denotes the electric field phasor, ω the angular frequency, μ = μrμ0

the dispersive complex magnetic permeability, ε = εrε0 the dispersive complex electric
permittivity and J = J(x, p) the phasor of current density. The vacuum and relative perme-
ability are denoted by μ0 and μr = μr(x, p), the vacuum and relative permittivity respec-
tively by ε0 and εr = εr(x, p). Assuming suitable boundary conditions, building the weak
formulation and discretizing with (high-order) Nédélec basis functions we derive the lin-
ear system

Aω(p)eω(p) = fω, (1)

with system matrix Aω(p), discrete solution eω(p), the discretized right-hand side fω , all
depending on the design parameter p and the frequency ω. For further details we refer to
[14–16]. As quantity of interest (QoI)

Qω(p) = q
(
eω(p)

)
,

we consider the scattering parameter (S-parameter), cf. [17, Chap. 3] and [8], i.e., Qω(p) :=
Sω(p). In this case, q is an affine linear function, but this is no requirement for the following
yield estimation methods.

If there are uncertainties in the manufacturing process, the design parameters may be
subject to random deviations. Therefore we model the uncertain parameter vector p as
multidimensional random variable. We assume p to be (truncated) Gaussian distributed
(cf. [18]), i.e., p ∼ NT (p,�, lb, ub) with mean value p, covariance matrix �, lower and
upper bounds lb and ub and the corresponding probability density function [19]

pdfNT (p) =

⎧
⎪⎨

⎪⎩

e– 1
2 (p–p)��–1(p–p)

∫ ub
lb e– 1

2 (p–p)��–1(p–p) dp
if lb ≤ p ≤ ub,

0 else.

Note that the definition of the yield and the proposed estimation method is independent
of the chosen probability density function pdf(p). The Gaussian distribution is a typical
choice for modeling design parameters as uncertain. Here, we truncate it to avoid non-
physical realizations of p, e.g. negative distances. Following [1] we define the performance
feature specifications as a restriction on our QoI in a specific interval, i.e.,

∣∣Sω(p)
∣∣ ≤ c ∀ω ∈ Tω = [ωl,ωu] in GHz, (2)
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where c is a constant and ω a range parameter from an interval Tω . Here, we identify ω with
the frequency and Tω with the frequency domain of interest. The safe domain is defined
as the set containing all parameters, fulfilling the performance feature specifications, i.e.,

�s :=
{

p :
∣
∣Sω(p)

∣
∣ ≤ c ∀ω ∈ Tω

}
. (3)

Then, the yield can be written as [1, Chap. 4.8.3, Eq. (137)]

Y (p) := E
[
1�s (p)

]
:=

∫ ∞

–∞
· · ·

∫ ∞

–∞
1�s (p) pdf(p) dp,

where E denotes the expected value and 1�s the indicator function with value 1 if the
parameter p lies inside the safe domain and value 0 otherwise.

3 A GPR-hybrid approach for yield estimation
In a MC analysis a large number of sample points is generated, according to the trun-
cated normal distribution of the uncertain parameters, and evaluated in order to obtain
the QoI. The fraction of sample points lying inside the safe domain is an estimator for
the yield. Since the accuracy depends directly on the size of the sample, a classic MC
analysis comes with high computational costs [20]. In the past, various surrogate based
approaches have been proposed. The idea is to approximate the QoI, i.e., find a mapping
from the design parameter p to S̃ω , where S̃ω is an approximation of Sω . This allows to
evaluate the performance feature specifications (2) and thus the safe domain (3) without
solving a PDE for each sample point. The stochastic collocation hybrid approach proposed
by [8] showed that the computational effort can be reduced significantly while ensuring
the same accuracy and robustness as with a classic MC method. Nevertheless, there are a
few drawbacks. First, since a polynomial collocation approach was used, the training data
for the surrogate model must come from a tensorial grid and cannot be chosen arbitrarily.
As a consequence the surrogate model cannot be updated easily, e.g. with the information
from the evaluation of critical sample points. This could be handled by using regression,
but the second disadvantage would still remain: In order to distinguish between critical
and non-critical sample points an adjoint error indicator was used. This requires the sys-
tem matrices and the solution of the primal and the dual problem, which is not always
given when using proprietary software and can become very costly in case of non-linear
QoIs. The GPR-Hybrid approach we propose in this paper overcomes these issues.

3.1 Gaussian process regression
Following Rasmussen and Williams [4, Chap. 2.2], the technique of Gaussian process re-
gression can be divided into four mandatory steps and one optional step.

1. Prior: We make some prior assumptions about the functions we expect to observe.
We write

(Sp)p∈P ∼ GP
(
m(p), k

(
p, p′)),

if we expect the S-parameter to follow a Gaussian process (GP) with specific mean m and
kernel function k. In the following we use the constant zero function as a starting value for
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the mean function. When the GP is trained, the mean value of the training data evaluations
will be used. As kernel function we choose the squared exponential kernel, which is also
known as RBF, i.e.,

k
(
p, p′) = ζe– |p–p′|2

2l2 ,

with the two hyperparameters ζ ∈ R and l > 0. At this point we refer to Sect. 4 to see
how we set the hyperparameters. For more information about hyperparameters in general,
please refer to [4, Chap. 5].

2. Training data: We collect data by evaluating sample points on the high fidelity FE
model. The so-called training data set

T =
{

P = [p1, . . . , pn]�, S =
[
S(p1), . . . , S(pn)

]�}

will be used to train the GP. In the following, we generate these sample points according
to the distribution of the uncertain parameters.

3. Posterior: In this step the information from the prior and the training data is combined
in order to obtain a new GP, with updated mean and kernel function. We write

K =

⎡

⎢⎢
⎣

k(p1, p1) · · · k(p1, pn)
...

...
k(pn, p1) · · · k(pn, pn)

⎤

⎥⎥
⎦ and m =

⎡

⎢⎢
⎣

m(p1)
...

m(pn)

⎤

⎥⎥
⎦ , (4)

then the posterior distribution of the output Sp depending on the training data set T is
given by

Sp|P, S ∼N (m, K).

4. Predictions: For an arbitrary test data point p� the predicted distribution of the output
Sp� depending on the training data set T and the test data point is given by

Sp� |p�, P, S ∼N
(
m

(
p�

)
+ k

(
p�, P

)
K–1(S – m),

k
(
p�, p�

)
– k

(
p�, P

)
K–1k

(
P, p�

))
, (5)

with

k
(
p�, P

)
=

[
k
(
p�, p1

)
, . . . , k

(
p�, pn

)]
,

k
(
P, p�

)
=

[
k
(
p1, p�

)
, . . . , k

(
pn, p�

)]�.

Thus, GPR predictions of the function value S̃GPR(p�) and the standard deviation σGPR(p�)
can be obtained. Please note, that σGPR(p�) is the standard deviation of the surrogate model
and is not related to the design uncertainty, i.e., �.
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5. Model update (optional): A new data point (padd., S(padd.)) can be used to update an
existing GPR model. Therefore the training data set is updated to

Pnew = [P, padd.] and Snew =
[
S, S(padd.)

]
, (6)

as well as (4) has to be updated according to

Knew =

[
K k(P, padd.)

k(padd., P) k(padd., padd.)

]

and mnew =

[
m

m(padd.)

]

. (7)

Then, predictions for a new test data point p� can be obtained by (5) using the updated
data from (6) and (7). This update involves the factorization of the matrix Knew which is
in the worst case of cubic complexity, i.e., O(n3), and can be reduced to O(r2n) by using
low-rank approximations, where n is the number of training data points and r the rank
of the low-rank approximation [4, Chap. 8]. In conclusion, we assume that this effort is
negligible in comparison to the high fidelity evaluations, i.e., solving (1). For more detailed
information about GPR we refer to [4, Chap. 2].

3.2 Combining GPR and the hybrid approach
The idea of the hybrid approach is saving computing time by evaluating most of the MC
sample points on a cheap to evaluate surrogate model and only a small subset of the sample
on the original high fidelity (e.g. FE) model. The critical sample points, i.e., sample points
close to the limit state function, are those which are evaluated on the high fidelity model.
As mentioned before, the choice of the critical sample points is crucial, for efficiency and
accuracy of this approach. In [7] and [8] adjoint error indicators are used. Here, we take
advantage of the GPR that provides an error indicator in the point p in the form of the
standard deviation σGPR(p). The performance feature specification expects the inequal-
ity (2) to hold in the whole frequency interval Tω . However, we define a discrete subset
Td ⊂ Tω and enforce only that the inequality holds for all ωj ∈ Td. This means, for each
frequency point ωj a separate surrogate model is built, otherwise rational interpolation
could be used, e.g. [21]. Thus, the GPR model and the resulting prediction values and
standard deviations depend on the frequency and are denoted by S̃GPR,ωj (p) and σGPR,ωj (p)
with j = 1, . . . , |Td|. We apply a short circuit strategy, i.e., a sample point is not evaluated
on the remaining frequency points if it has already been rejected for a previous one. This
allows us to save computing time and does not affect the estimation result, except the case
that a sample point has been rejected erroneously based on an underestimated standard
deviation prediction. Further, we build separate surrogate models for the real part and the
imaginary part of the S-parameter, and later combine them for the prediction. This guar-
antees (affin-)linearity of the QoI by avoiding the square root. Algorithm 1 shows the clas-
sification procedure for one sample point pi. Once the GPR models are constructed, a MC
analysis is carried out on the surrogates. For each sample point a predicted S-parameter
value and a predicted standard deviation are obtained. Following the concept of sigma-
levels [22], the predicted standard deviation multiplied with a safety factor γ is considered
as an error indicator for the surrogate model. The value of γ is problem dependent and
can be derived by evaluating some test data points on the high fidelity model and on the
GPR model and considering the ratio of the true error and the predicted error, i.e., the
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Algorithm 1 Hybrid decision
1: Input: sample point pi, frequency range Td, threshold c, safety factor γ , GPR surrogate

models
2: for j = 1, . . . , |Td| do
3: Evaluate the GPR model and obtain S̃GPR,ωj (pi) and σGPR,ωj (pi)
4: if |S̃GPR,ωj (pi)| + γ |σGPR,ωj (pi)| ≤ c then
5: Performance feature specifications fulfilled for ωj

6: else if |S̃GPR,ωj (pi)| – γ |σGPR,ωj (pi)| > c then
7: Classify pi /∈ �s (not accepted) and stop
8: else
9: pi is a critical sample point

10: Evaluate the high fidelity model and obtain Sωj (pi)
11: if |Sωj (pi)| ≤ c then
12: Performance feature specifications fulfilled for ωj

13: else
14: Classify pi /∈ �s (not accepted) and stop
15: end if
16: end if
17: if j = |Td| then
18: Classify pi ∈ �s (accepted)
19: else
20: Continue with j = j + 1
21: end if
22: end for

standard deviation. The predicted standard deviation multiplied with the safety factor γ

serves as a buffer zone. If the performance feature specification (2) is (not) fulfilled for the
predicted S-parameter value and all values in the range plus/minus this buffer zone the
considered sample point is classified as (not) accepted, else it is classified as critical and
reevaluated on the high fidelity model. Then, the yield will be estimated by

Ỹ (p) =
1

NMC

NMC∑

i=1

1�s (pi),

where NMC is the size of the MC sample. A significant advantage of GPR is, that the model
can be easily updated on the fly. Algorithm 2 shows the process of yield estimation in-
cluding updating the GPR models. Typically the computational effort of a surrogate based
approach lies in the offline evaluation of the training data. Therefore we start with a small
initial training data set. The resulting less accurate GPR model does not pose a problem
in terms of yield estimation accuracy, because the hybrid method still classifies all MC
sample points correctly as accepted or not accepted. The only difference is, that there
might be more critical sample points in the beginning, if the initial GPR surrogate has
been built with a smaller training data set. Then, during the estimation process (online),
we use critical sample points to improve our GPR model. This update requires almost no
additional computational effort, since these sample points were calculated in the hybrid
method anyway. In order to enable parallel computing even with model updates, we intro-
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Algorithm 2 Yield estimation with GPR
1: Input: initial GPR models for each frequency point ωj ∈ Td, set of MC sample points

pi, i = 1, . . . , NMC, error tolerance εt≥0, batch size NB ∈N

2: for i = 1, . . . , NMC do
3: Classify pi according to Algorithm 1
4: Count number of online high fidelity evaluations |HFonline

GPR-H|
5: for j = 1, . . . , |Td| do
6: Define Cj = {pi : pi classified as critical for ωj in last NB high fidelity evaluations}
7: end for
8: if |HFonline

GPR-H| is an integer multiplier of NB then
9: for j = 1, . . . , |Td| do

10: Initialize ε = ∞
11: while ε > εt do
12: Set padd. = arg maxpi∈Cj |S̃GPR,ωj (pi) – Sωj (pi)|
13: Update GPR model for ωj with sample point padd.

14: Evaluate updated GPR model and obtain updated S̃GPR,ωj (pi) for all pi ∈ Cj

15: Calculate ε = maxpi∈Cj |S̃GPR,ωj (pi) – Sωj (pi)|
16: end while
17: end for
18: end if
19: end for
20: Estimate the yield with Y (p) = |�s|

NMC

duce so-called batches. Only after the calculation of NB high fidelity evaluations (possibly
in parallel), a GPR model update is considered. With NB we refer to the size of the batches,
setting NB = 1 indicates that no batches are used. If only a part of the critical sample points
is added to the training data set for updating the GPR model, they are chosen in a greedy
way: After evaluating one batch of MC sample points, the resulting critical sample points
of the j-th frequency point are collected in the set Cj (cf. line 6 in Algorithm 2). Then,
the sample point for which the difference between the predicted value and the real value
of the S-parameter is maximum will be included in the training data set (cf. line 12 in
Algorithm 2). The GPR model is updated with the additional training data point and all
sample points in Cj are evaluated on the new GPR surrogate model in order to obtain a
new prediction. This procedure is repeated until the error is below a tolerance εt . Using
the updated GPR model, the next MC sample points are evaluated until again NB sample
points have been evaluated on the high fidelity model (in parallel) and GPR model updates
are considered. Without much extra cost it is also possible to reevaluate all already consid-
ered, non-critical sample points after each GPR model update. At this point it can also be
decided whether all critical sample points are added to the training data set or only a part.
Especially when solving in batches, it can be advisable not to include all critical sample
points in order to avoid adding to many, closely neighboring sample points. If εt = 0, all
critical sample points are used to update the GPR model.

The proposed updating strategy can be modified by sorting the sample points with neg-
ligible costs. The idea is to start with the most promising sample points, i.e., those that
contribute most to the improvement of the GPR model. This shall lead to more sample
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points classified correctly without being evaluated on the high fidelity model. In [9] differ-
ent sorting criterions are described and compared. Here, we will focus on two criterions.
The criterion proposed by Echard, Gayton and Lemaire in [23], which we will call the EGL
criterion in the following, and a criterion based on our hybrid decision rule, which we will
call the Hybrid criterion. The EGL criterion is given by

CEGL(pi) := min
ωj

|S̃GPR,ωj (pi) – c|
|σGPR,ωj (pi)| ,

where c denotes the upper bound for the performance feature specification from (2). Then,
the sample points are sorted such that we start with the smallest value, i.e., minpi CEGL(pi)
[23]. The Hybrid criterion is defined by

CH(pi) := max
ωj

(
c –

(∣∣S̃GPR,ωj (pi)
∣∣ – γ

∣∣σGPR,ωj (pi)
∣∣))

((∣∣S̃GPR,ωj (pi)
∣∣ + γ

∣∣σGPR,ωj (pi)
∣∣) – c

)
.

Per definition

CH(pi)

⎧
⎨

⎩
> 0, if pi is critical,

≤ 0, else

holds. Using this criterion, the sample points are sorted such that we start with the largest
value, i.e., maxpi CH(pi). Algorithm 3 is a modification of Algorithm 2 including the sorting
strategy. Before the classification of each sample point is started, all sample points are
evaluated on the GPR models and sorted according to the chosen sorting criterion, e.g.
the EGL criterion or the Hybrid criterion. Nevertheless, in the sampling strategy proposed
in Algorithm 3 the sorting criterion can be replaced by any other criterion. For the use of
batches, for example, a sorting criterion avoiding closely lying sample points within a batch
could be even more efficient. After updating the GPR model for one batch of MC sample

Algorithm 3 Sorting strategy for yield estimation
1: Input: initial GPR models for each frequency point ωj ∈ Td, set of MC sample points

pi, i = 1, . . . , NMC, batch size NB ∈N, sorting criterion
2: Evaluate all sample points pi, i = 1, . . . , NMC on the GPR models
3: Sort all sample points according to the chosen sorting criterion
4: for i = 1, . . . , NMC do
5: Run lines 3–7 from Algorithm 2 (i.e., classify pi and define Cj)
6: if |HFonline

GPR-H| is an integer multiplier of NB then
7: Run lines 9–17 from Algorithm 2 (i.e., update GPR models)
8: Evaluate remaining sample points pk , k = i + 1, . . . , NMC

9: Sort the remaining sample points according to the chosen sorting criterion
10: end if
11: end for
12: Estimate the yield with Y (p) = |�s|

NMC
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points, the remaining MC sample points are reevaluated on the updated GPR model and
sorted again, according to the chosen criterion. This is repeated until all sample points are
classified.

4 Numerical results
In the following we perform numerical tests on two examples, a dielectrical waveguide
and a stripline low pass filter. The results of the waveguide are also compared with the
estimates resulting from a linearization, which is common in industry. The computations
have been carried out with the following configuration: Intel i7-8550U processor with four
cores, 1.80 GHz and 16 GB RAM. For solving the corresponding PDEs (1) with FEM, the
frequency domain solver of CST Studio Suite®2018 [13] has been used. The yield estima-
tion has been carried out in python 3.7, using the scikit-learn package version 0.21.3 [24]
for GPR. Solving our simple models takes only about 15 seconds in CST, while the factor-
ization for the GPR model update is always �1 second.

4.1 Dielectrical waveguide
The benchmark problem, an academic example, on which we perform the numerical tests
is a simple dielectrical waveguide, cf. [8]. We consider two uncertain geometrical param-
eters, the length of the dielectrical inlay p1, the length of the offset p2 (see Fig. 1), and two
uncertain material parameters p3 and p4 with the following effect on the relative perme-
ability and permittivity of the inlay

εr = 1 + p3 + (1 – p3)
(
1 + jω

(
2π5 · 109)–1)–1,

μr = 1 + p4 + (2 – p4)
(
1 + jω

(
1.1 · 2π20 · 109)–1)–1.

The mean and covariance (in mm) is given by

p = [10.36, 4.76, 0.58, 0.64]� and � = diag
([

0.72, 0.72, 0.32, 0.32]).

The distribution of the geometrical parameters is truncated on the left at pi – 3 mm and
on the right at pi + 3 mm (i = 1, 2), the distribution of the material parameters is trun-
cated on the left at pi – 0.3 and on the right at pi + 0.3 (i = 3, 4). The performance feature
specifications are

∣
∣Sω(p)

∣
∣ !≤ –24 dB ∀ω ∈ Tω = [2π6.5, 2π7.5] in GHz.

Figure 1 Rectangular waveguide with dielectrical inlay of length p1 modelled in CST [13]
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Figure 2 Values of MC yield estimators for different sample sizes NMC . The gray shaded area indicates the
corresponding σ̃Y interval for each sample size

In this frequency range we consider eleven equidistant frequency points ωj ∈ Td. A com-
monly used error indicator for MC estimation is given by [20]

σ̃Y :=

√
Y (p)(1 – Y (p))

NMC
≤ 0.5√

NMC
, (8)

where σ̃Y denotes the standard deviation of the yield estimator. Since the size of the yield is
not known on beforehand, we estimate its upper bound by Y (p) = 0.5. We allow a standard
deviation of σ̃Y = 0.01. According to (8) this leads to a sample size of NMC = 2500. Figure 2
shows values of MC yield estimators of the waveguide for different sample sizes. The black
line indicates the most accurate solution we have calculated, i.e., YMC for NMC = 10,000.
The gray shaded area indicates the σ̃Y level for the yield estimator of the corresponding
sample size.

The number of high fidelity evaluations before a possible update of the GPR model
(batch) can be set to the number of parallel processors available, since these evaluations
can be carried out in parallel. However, this value also has another effect: a small number
leads to more frequent model updates than a larger number. In general, more frequent
model updates imply less critical sample points. We present tests with NB = 50, NB = 20
and NB = 1. The latter implies that no calculation in batches is used. The error tolerance
is set to εt = 0, since this leads to the best results for the waveguide example, i.e., all criti-
cal sample points are added to the training data set. Further we set the safety factor γ = 2.
This is a rather conservative choice, which may result in too many sample points classified
as critical and evaluated on the high fidelity model. Thus, this may increase the comput-
ing effort, but it also leads to higher accuracy, since misclassification of sample points is
avoided.

For the GPR, the applied kernel is the product of a constant kernel representing ζ and
an RBF kernel representing the exponential function with hyperparameter l. In scikit-
learn, the hyperparameters have a starting point, in our case ζ0 = 0.1 and l0 = 1, and then
they are optimized within given bounds, in our case bζ = (10–5, 10–1) and bl = (10–5, 105),
respectively. We allowed the hyperparameters to be tuned within 10 iteration steps in
order to find the most suitable values for our data. Due to this optimization, the initial
setting does not affect the results of the yield estimation significantly. Further we set the
noise parameter α = 10–5. This parameter defines the allowed deviation from the training
data in the interpolation and is recommended to avoid numerical issues, e.g. due to mesh
noise. For more information about setting the hyperparameters we refer to [4, Chap. 2.3]
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and [24]. Once we have evaluated first training data points, the training data’s mean is set
as mean function of the GP.

For the simple waveguide a closed form solution of (1) exists, cf. [25]. However, we will
refer to this solution as high fidelity solution in the following, since in practice a com-
putational expensive FEM evaluation would be necessary at this point. In the following
we denote the number of high fidelity evaluations for a specific method with |HFmethod|.
Further we introduce the number of effective evaluations |EEmethod| = � |HFmethod|

NB
�, which

refers to the non-parallel high fidelity evaluations when using batches. The yield estimator
with a pure, classic MC method serves as reference solution ỸRef. = 95.44%. The number
of high fidelity evaluations is |HFRef.| = 26, 360. Allowing parallel computing the number of
effective evaluations would be 528 for batch size NB = 50 and 1318 for batch size NB = 20.
Please note, that the short circuit strategy mentioned in Sect. 3.2 has been applied, i.e.,
a sample point is not tested for a frequency point if it has been rejected for a previous
one. Without this short circuit strategy the number of high fidelity evaluations would
be the product of the number of frequency points and the size of the MC sample, i.e.,
|Td| · NMC = 11 · 2500 = 27,500.

In order to build the GPR models, an initial training data set is needed. It consists of ran-
dom data points generated according the truncated Gaussian distributionNT (p,�, lb, ub)
of the uncertain parameters. The size of the initial training data set is chosen, such that
the total costs, i.e., the sum of offline (initial training data) and online (critical sample
points) costs, is minimal. Using batch size NB = 50, we tested different sizes of the ini-
tial training data set, see Table 1. We proceed with the best performing number of ten
training data points. For smaller initial training data sets the offline costs decrease, but
the online costs increase. For larger initial training data sets it is the opposite. Only this
initial training data set is the same for all GPR models. Then, the estimation procedure
with Algorithm 2 is started. After a batch of NB critical sample points the GPR models
are updated individually if there were critical sample points on them. Table 2 shows the
online high fidelity costs |HFonline

GPR-H| and effective evaluations |EEonline
GPR-H| for yield estimation

with different updating strategies. In order to obtain the total costs, the costs for the initial
training data set |HFoffline

GPR-H| = 110, |EEoffline
GPR-H| = � 110

NB
� respectively, need to be added. In all

cases, the yield estimator is ỸGPR-H = 95.44%, so we obtain the same accuracy as with pure

Table 1 Comparison of the number of high fidelity evaluations for the GPR-Hybrid approach
|HFGPR-H| for different sizes of the initial training data set |TI|, using batch size NB = 50

|TI| = 5 |TI| = 10 |TI| = 30

|HFoffline
GPR-H| 55 110 330

|HFonlineGPR-H| 306 226 179

|HFtotalGPR-H| 361 336 509

Table 2 Comparison of the number of online high fidelity evaluations |HFonlineGPR-H| and effective
evaluations |EEonlineGPR-H| for the GPR-Hybrid approach with different updating strategies

No sorting EGL criterion Hybrid criterion

|HFonlineGPR-H| |EEonlineGPR-H| |HFonlineGPR-H| |EEonlineGPR-H| |HFonlineGPR-H| |EEonlineGPR-H|
NB = 1 178 178 146 146 127 127
NB = 20 197 10 163 9 160 8
NB = 50 226 5 201 5 209 5



Fuhrländer and Schöps Journal of Mathematics in Industry           (2020) 10:25 Page 13 of 17

Figure 3 Number of high fidelity evaluations
|HFtotalGPR-H| over the number of considered MC
sample points, using NB = 50 and different sorting
strategies. The marks indicate the position where
one batch is completed

MC. With all updating strategies, the number of high fidelity evaluations can be reduced
at least by factor 78, in the best case by factor 111, compared to classic MC. In the first
setting, NB = 1, there are no batches (i.e., batches of size 1). Without sorting and with both
sorting criteria, this setting has the lowest number of high fidelity evaluations. However,
parallel computing is not possible without batches, so the number of effective evaluations
equals the number of high fidelity evaluations. Using batches, the GPR models are not
updated immediately, only after evaluating the complete batch. This leads to an increase-
ment of the number of high fidelity evaluations. But, batches allow parallel computing (on
NB parallel computers), i.e., the number of effective evaluations is much lower.

Further, we see that the number of high fidelity evaluations decreases when applying
a sorting strategy. The GPR model is improved after the evaluation of a critical sample
point. Due to the sorting, we start with the most critical sample points, so the GPR model
improves fast and less sample points are categorized as critical. The larger the batches
are, the smaller the effect of sorting. Figure 3 shows the number of high fidelity evalua-
tions |HFtotal

GPR-H| over the number of MC sample points, which have been considered for
classification. For the 0-th considered MC sample point the offline costs are plotted, then
the total costs. The different sorting strategies from Table 2 are compared for batch size
NB = 50. The marks indicate the position, where one batch is completed. We see, using
sorting strategies, first all critical sample points are evaluated on the high fidelity model,
then the non-critical sample points on the GPR model, i.e., the number of high fidelity
evaluations increases early and then remains constant. The batches are filled within the
first 250 MC sample points. Without sorting, the increasement is also a bit steeper in the
beginning, but in general the batches are spread over the whole MC sample. In the end,
the total number of high fidelity evaluations is similar for all strategies.

In the following, we compare these results to the results of the stochastic collocation
hybrid approach proposed in [8]. The hybrid method is the same, the difference lies in
the choice of the surrogate model and the error indicator for defining the critical sample
points. In [8], the surrogate model is built using an adaptive stochastic collocation ap-
proach with Leja nodes, which led to a maximum polynomial degree of three. Once the
polynomial surrogate is built, it is not straightforward to update it during the estimation
procedure. Thus, higher accuracy in the initial model is required. An adjoint error indi-
cator is used to estimate the error of the surrogate model. Analogously to the standard
deviation of the GPR model, this error indicator, multiplied with a safety factor. Using this
stochastic collocation hybrid approach, the same accuracy, i.e., the same yield estimator,
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was reached using |HFtotal
SC-H| = |HFoffline

SC-H | + |HFonline
SC-H | = 330 + 165 = 495 high fidelity eval-

uations. The number of training data points was chosen such that the method performs
best.

4.2 Comparison with a linearization approach
In practice, often a simple linearization of the QoI is used for the MC analysis, assuming
that the design parameter deviations are small enough to obtain valid results [13]. There-
fore we compare the proposed GPR-Hybrid approach with linearization in the following.
Linearizations means here, that we use a surrogate model, built by linear interpolation
with two points in each dimension, i.e., in addition to p0 = [p0

1, p0
2, p0

3, p0
4]� we consider the

four nodes

pk = p0 + δpek , k = 1, . . . , 4,

where ek is the k-th unit vector and δp > 0 the step size (if interpreted in the context of
finite differences). Alternatively, derivative information could be used if available. These
five nodes are used to create a linear approximation according to

S̃GPR,ωj

(
pk) =

|pk |∑

l=1

(
alpk

l
)

+ a|pk |+1,

where |pk| is the length of the vector pk and the al are the coefficients of the lineariza-
tion. This model is setup for each frequency point ωj and for the real and the imaginary
part of the S-parameter separately. Then a MC analysis on the linear surrogate models
is performed. In Fig. 4 we see the results of the yield estimation for different values of
δp. We compare this to the MC solution on the high fidelity model as reference solu-
tion and the GPR-Hybrid solution from Sect. 4.1. We introduce υ ∈ [0, 1] as a measure
of the magnitude of deviation. The covariance matrix � is multiplied with this factor υ

in order to obtain problem settings with varying magnitude of uncertainty, i.e., we con-
sider p ∼ NT (p,υ�, lb, ub) with different values for υ . For υ = 1 we obtain the results of
Sect. 4.1, for υ < 1 the scaled variance decreases and the yield estimator increases until
for υ = 0 there is no uncertainty at all and the yield is Y = 1 since p is in the safe domain.
While the GPR-Hybrid solution exactly matches the reference solution for all magnitudes

Figure 4 Comparison of different yield estimation
approaches over υ : Reference solution is MC which
coincides with the GPR-Hybrid approach. The
linearization approach is plotted for different values
of the step size δp
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υ of uncertainty, we observe considerable deviations in the linearization model for any
value of δp (for υ > 0.5). These deviations decrease as expected with decreasing variance.

4.3 Lowpass filter
We consider as industrial example a stripline lowpass filter, see Fig. 5, taken from the exam-
ples library of CST Studio Suite®[13]. We consider six uncertain geometrical parameters
g = [L1, L2, L3, W1, W2, W3]� describing length and width of the single blocks. Again, we
assume the uncertain parameters to follow a truncated Gaussian distribution with mean
and covariance (in mm) given by

g = [6.8, 5.1, 9.0, 1.4, 1.4, 1.3]� and �g = diag
([

0.32, 0.32, 0.32, 0.12, 0.12, 0.12]).

The distribution of L1, L2 and L3 is truncated at Li ± 3 mm (i = 1, 2, 3), the distribution of
W1, W2 and W3 at Wi ± 0.3 mm (i = 1, 2, 3). Since the requirement for a low pass filter is
to allow low frequency signals to pass through while filtering out high frequency signals,
in this example we have two performance feature specifications given by

I.)
∣∣Sω(g)

∣∣ !≥ –1 dB ∀ω ∈ Tω,1 = [2π0, 2π4] in GHz,

II.)
∣∣Sω(g)

∣∣ !≤ –20 dB ∀ω ∈ Tω,2 = [2π5, 2π7] in GHz.

As in the previous example we set σ̃Y = 0.01 which leads to a sample size of NMC = 2500,
according to (8). Again, we show test results for NB = 50, NB = 20 and NB = 1 and εt = 0.
Also, the kernel function and the hyperparameter settings are as in the previous example.
The safety is set to γ = 3. Further we consider eight equidistant frequency points ωj ∈ Td,
i.e., eight GPR surrogate models are built. The evaluation of the high fidelity model is
implemented in CST, using the default parameters of the frequency domain solver. The
mathematical model is described in [26]. An evaluation within CST calculates the S-
parameter in a whole frequency range, i.e., for all considered frequency points ωj ∈ Td.
Therefore, with respect to this example, we look at the number of CST calls |CCmethod|

Figure 5 Lowpass filter from examples library of CST Studio Suite®[13]
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Table 3 Comparison of the number of online CST calls |CConlineGPR-H| and effective calls |EConlineGPR-H| for the
GPR-Hybrid approach with different updating strategies

No sorting EGL criterion Hybrid criterion

|CConlineGPR-H| |EConlineGPR-H| |CConlineGPR-H| |EConlineGPR-H| |CConlineGPR-H| |EConlineGPR-H|
NB = 1 320 320 269 269 254 254
NB = 20 352 18 299 15 288 15
NB = 50 378 8 339 7 326 7

as a measure for the computational effort. As before, in order to measure the efficiency
for parallel computing, we introduce the number of effective calls |ECmethod| = � |CCmethod|

NB
�

as the number of non-parallelizable CST calls. As reference value we consider the yield
estimation with a pure Monte Carlo analysis. There, the computational effort is given
by |CCRef.| = 2500 and the estimated yield is ỸRef. = 87.08%. Again, the size of the ini-
tial training data set in the GPR-Hybrid approach has been chosen such that the total
costs are minimal. This leads to an initial training data set of |TI| = 30 sample points. This
means we have an offline cost of |CCoffline

GPR-H| = 30, because all frequency points are evalu-
ated simultaneously in CST. Now we evaluate the NMC sample points on the GPR model.
If one sample point for one frequency point turns out to be a critical sample point, we
evaluate this sample point for all frequency points with CST and use this information also
for a possible update of the GPR models.

Table 3 shows the online CST calls |CConline
GPR-H| and effective calls |EConline

GPR-H| for different
updating settings. Compared to classic MC analysis the computational effort can be re-
duced by a factor between 6 and almost 9, depending on the settings, while maintaining
the accuracy. The lower savings in computational effort compared to the previous exam-
ple of the waveguide is due to the fact that it is a more complex example on the one hand,
but on the other hand also due to the simultaneous evaluation of all frequency points, be-
cause often a sample point is not critical for all frequency points. The results regarding
the impact of the batch size NB remains similar as in the previous example. Without using
batches, the lowest number of CST calls is needed. The number increase with the size of
the batch, while the costs for effective calls decrease using parallel computations. Also, a
slight improvement of efficiency by sorting the sample points could be observed.

5 Conclusions
A hybrid approach combining the efficiency of surrogate based approaches and the reli-
ability and accuracy of the classic Monte Carlo method has been proposed. As surrogate
model Gaussian Process Regression has been introduced and its standard deviation esti-
mator was used as error indicator. Numerical results show that the computational effort
can be significantly reduced while maintaining accuracy. This allows yield estimation in
a reasonable time without the need for high performance computers as it would be the
case with a pure Monte Carlo analysis. Future research will focus on embedding the pre-
sented yield estimation methods in yield optimization. Furthermore, interpolation in the
direction of the range parameter could be investigated.

Acknowledgements
The work of Mona Fuhrländer is supported by the Excellence Initiative of the German Federal and State Governments and
the Graduate School of Computational Engineering at TU Darmstadt. The authors would like to thank Frank Mosler of
Dassault Systèmes Deutschland GmbH for the fruitful discussions regarding the setup of the industrial example. Further,



Fuhrländer and Schöps Journal of Mathematics in Industry           (2020) 10:25 Page 17 of 17

the authors thank Julien Bect of CentraleSupélec for very interesting discussions on generating and sorting training data
for GPR models. Open Access funding enabled and organized by Projekt DEAL.

Funding
No funding to report.

Abbreviations
PDE, partial differential equation; FEM, finite element method; MC, Monte Carlo; IS, Importance Sampling; RBF, radial basis
functions; GPR, Gaussian process regression; QoI, quantity of interest; GP, Gaussian process.

Availability of data and materials
The codes and datasets generated and analyzed during the current study are available in the following GitHub repository
https://github.com/temf/YieldEstOptGPR.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors have jointly carried out research and worked together on the manuscript. The numerical tests have been
conducted by MF. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 31 March 2020 Accepted: 30 September 2020

References
1. Graeb HE. Analog design centering and sizing. Dordrecht: Springer; 2007.
2. Hammersley JM, Handscomb DC. Monte Carlo methods. London: Methuen & Co Ltd; 1964.
3. Rao CR, Toutenburg H. Linear models: least squares and alternatives. 2nd ed. New York: Springer; 1999.
4. Rasmussen CE, Williams CKI. Gaussian processes for machine learning. Cambridge: MIT Press; 2006.
5. Babuška I, Nobile F, Tempone R. A stochastic collocation method for elliptic partial differential equations with random

input data. SIAM J Numer Anal. 2007;45(3):1005–34. https://doi.org/10.1137/100786356.
6. Li J, Xiu D. Evaluation of failure probability via surrogate models. J Comput Phys. 2010;229(23):8966–80.

https://doi.org/10.1016/j.jcp.2010.08.022.
7. Butler T, Wildey T. Utilizing adjoint-based error estimates for surrogate models to accurately predict probabilities of

events. Int J Uncertain Quantificat. 2018;8(2):143–59.
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018020911.

8. Fuhrländer M, Georg N, Römer U, Schöps S. Yield optimization based on adaptive Newton-Monte Carlo and
polynomial surrogates. Int J Uncertain Quantificat. 2020;10(4):351–73.
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2020033344.

9. Bect J, Ginsbourger D, Li L, Picheny V, Vazquez E. Sequential design of computer experiments for the estimation of a
probability of failure. Stat Comput. 2012;22(3):773–93.

10. Bect J, Li L, Vazquez E. Bayesian subset simulation. SIAM/ASA J Uncertain Quantificat. 2017;5(1):762–86.
https://doi.org/10.1137/16m1078276.

11. Xiao S, Oladyshkin S, Nowak W. Reliability analysis with stratified importance sampling based on adaptive kriging.
Reliab Eng Syst Saf. 2020;197:106852.

12. Zhang J, Taflanidis AA. Accelerating MCMC via kriging-based adaptive independent proposals and delayed rejection.
Comput Methods Appl Mech Eng. 2019;355:1124–47.

13. Dassault Systèmes Deutschland GmbH: CST Studio Suite®. 2018. www.3ds.com.
14. Jackson JD. Classical electrodynamics. 3rd ed. New York: Wiley; 1998. https://doi.org/10.1017/CBO9780511760396.
15. Nédélec JC. Mixed finite elements in R3. Numer Math. 1980;35(3):315–41. https://doi.org/10.1007/BF01396415.
16. Monk P. Finite element methods for Maxwell’s equations. Oxford: Oxford University Press; 2003.
17. Pozar DM. Microwave engineering. New York: Wiley; 2011. https://books.google.at/books?id=_YEbGAXCcAMC.
18. Cohen AC. Truncated and censored samples: theory and applications. 2016. p. 1–303.
19. Wilhelm S, Manjunath B. tmvtnorm: a package for the truncated multivariate normal distribution. R J. 2010;2:25–9.

https://doi.org/10.32614/RJ-2010-005.
20. Giles MB. Multilevel Monte Carlo methods. Acta Numer. 2015;24:259–328. https://doi.org/10.1017/S09624929.
21. Gustavsen B, Semlyen A. Rational approximation of frequency domain responses by vector fitting. IEEE Trans Power

Deliv. 1999;14(3):1052–61. https://doi.org/10.1109/61.772353.
22. Kumar UD, Crocker J, Chitra T, Saranga H. Reliability and six sigma. EngineeringPro collection. New York: Springer;

2006. https://books.google.td/books?id=5_amcGFkhEIC.
23. Echard B, Gayton N, Lemaire M. AK-MCS: an active learning reliability method combining kriging and Monte Carlo

simulation. Struct Saf. 2011;33(2):145–54.
24. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,

Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine learning in Python.
J Mach Learn Res. 2011;12:2825–30.

25. Loukrezis D. Benchmark models for uncertainty quantification. GitHub. 2019.
https://github.com/dlouk/UQ_benchmark_models/tree/master/rectangular_waveguides/debye1.py.

26. Eller M, Reitzinger S, Schöps S, Zaglmayr S. A symmetric low-frequency stable broadband Maxwell formulation for
industrial applications. SIAM J Sci Comput. 2017;39(4):703–31. https://doi.org/10.1137/16M1077817.

https://github.com/temf/YieldEstOptGPR
https://doi.org/10.1137/100786356
https://doi.org/10.1016/j.jcp.2010.08.022
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018020911
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2020033344
https://doi.org/10.1137/16m1078276
http://www.3ds.com
https://doi.org/10.1017/CBO9780511760396
https://doi.org/10.1007/BF01396415
https://books.google.at/books?id=_YEbGAXCcAMC
https://doi.org/10.32614/RJ-2010-005
https://doi.org/10.1017/S09624929
https://doi.org/10.1109/61.772353
https://books.google.td/books?id=5_amcGFkhEIC
https://github.com/dlouk/UQ_benchmark_models/tree/master/rectangular_waveguides/debye1.py
https://doi.org/10.1137/16M1077817

	A blackbox yield estimation workﬂow with Gaussian process regression applied to the design of electromagnetic devices
	Abstract
	Keywords

	Introduction
	Problem setting
	A GPR-hybrid approach for yield estimation
	Gaussian process regression
	1. Prior:
	2. Training data:
	3. Posterior:
	4. Predictions:
	5. Model update (optional):

	Combining GPR and the hybrid approach

	Numerical results
	Dielectrical waveguide
	Comparison with a linearization approach
	Lowpass ﬁlter

	Conclusions
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


