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1 Introduction

In recent years, non-intrusive power load monitoring and decomposition (NILMD) tech-
nology has attracted the attention of many scholars due to the high cost, low efficiency
and limited application of traditional power load monitoring methods [1-10]. Har [1] ini-
tially put forward the idea and theory of non-invasive load decomposition, mainly through
load decomposition at the entrance of residential electricity load. Roos et al. [2] proposed
multi-level neural network algorithm to analyze power load characteristics. Drenker et al.
[3] developed a database system which can extract the steady-state load characteristics of
electrical equipment. The system determines the energy consumption of individual appli-
ances being turned on and off within a whole building’s electric load. By using changes in
active power and reactive power, they used clustering analysis algorithm to identify electri-
cal equipment. To improve the recognition effect of equipment Laughmam et al. [4] used
the FFT algorithm to analyze the characteristics of harmonic load on this basis. Suzuki et
al. [5] used integer programming to decompose and identify electrical equipment. Choksi
et al. [6] proposed to identify electrical equipment based on power load characteristics
and decision tree algorithm. Hassan et al. [8] expands and evaluates appliance load sig-
natures based on V-I trajectory—the mutual locus of instantaneous voltage and current
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waveforms, and they also demonstrate the use of variants of differential evolution as a
novel strategy for selection of optimal load models. Lu et al. [9] proposed a classification
method based on extreme learning machine (ELM) algorithm for electricity consumption
behavior analysis, and the feature preference strategy is adopted to extract the best feature
sets of the load curve, which were used as the input of ELM network. However, the above
non-invasive equipment identification algorithms only consider the load data at the load
entrance, so it cannot achieve high-precision identification through a single identification
algorithm. This load decomposition technique is expected to be a better technique for
dynamic load separation because it includes transient and steady-state characteristics to
achieve better energy saving and emission reduction effects in the future. Including mul-
tiple features in the feature matrix helps to increase computational time and complexity.
We can potentially reduce computing time and complexity by using specific features of
specific categories of devices. Avoiding unnecessary extraction is helpful to the training of
database and the optimization of decomposition and recognition technology. In this paper,
event detection algorithm, load decision tree algorithm and 0—1 quadratic programming

model are combined to improve the accuracy of power load identification.

2 Related work
The following methods are used to realize our research in NILMD system.

2.1 Event detection algorithm
Event detection [11] and load characteristics are mutually complementary. This paper
takes the change value Ap of the characteristic value p of active power as the criterion
for event detection, and sets a reasonable power change threshold according to the elec-
trical equipment and operating parameters. However, some electrical equipment will have
a large peak of power at the moment of starting (the motor starting current is higher than
the rated current). Although this does not affect the accuracy of determining the time of
occurrence of the event, it may cause inaccurate change of the steady-state power of the
electrical equipment. The transient process of different equipment is long to short, so it
is necessary to combine the data within a certain time range to determine whether an
event has occurred. Due to the power quality (such as voltage drop), the active power will
change suddenly and it is easy to make wrong judgment. In the case that the equipment
group contains both the low power and the high power equipment, if the threshold set-
ting is too large, the high power equipment will cover the low power equipment, and if the
threshold setting is too small, the number of detected events will be multiplied. Therefore,
the threshold setting must consider both the power level of the equipment contained in
the equipment group and the change value of the steady state power. In this paper, using
time as horizontal axis and power value as vertical axis, the time-power diagram is drawn,
and the power threshold value is determined by observing the graph and calculating the
percentage of the power value of electrical equipment. Take equipment group 4, 5 and 6
in Annex 3 of question A as examples to determine the power threshold as in Table 1.

The steps of the event detection algorithm are as follows.

Step 1. Calculate the difference Ap; between the current time of active power and the
previous time. If Ap; > p1, go to Step 3, otherwise enter Step 2.

Step 2. Read the next time data and return to Step 1.

Step 3. The event duration D increases by 1 second on its original basis and go to Step 4.
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Table 1 Power threshold table

Power threshold D1 253
The equipment group 4-YD2+YD8 3000 4000
The equipment group 5-YD3+YD5+YD11 5000 16,000

The equipment group 6-YD1+YD2+YD3+YD6+YD7 3000 5000
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Figure 1 Event detection diagram for equipment group 4

Step 4. Read the next time data and calculate to get Apy,p = prip — pe. If Aprp > p1, g0
to Step 5, otherwise, go to Step 6.

Step 5. Read the next time data and return to Step 3.

Step 6. According to the event duration D, we can get the end time of the event is ¢ + D.
Calculate the change value of active power before and after the event is calculated. If
Apiip > p2, g0 to Step 7, otherwise, it will be judged that no events have occurred, re-
turn to Step 2.

Step 7. Output results. According to the positive and negative conditions of Ap;,p, we
can judge whether this event is a power increase event or a power decrease event. If the
result is positive, the active power of the system increases. We judge that it is an ascend-
ing event, which is generally caused by the start of operation or the change of state of the
electrical equipment. If the result is negative, it indicates that the active power of the sys-
tem decreases. It is judged as a falling event, which is generally caused by the change of
the running state of the electrical equipment when it is cut off. We think of time ¢ + D as
the end of the event, and the time as the beginning of the next event. In order to reflect
the change of power more objectively, we took the active power data within five seconds
before time ¢. The arithmetic mean value is taken as the active power of the system be-
fore the event occurs. Similarly, the active power data of five seconds after ¢ + D time are
taken, and the arithmetic average value represents the active power of the system after
the event. Therefore, we get the difference between the two, which is the required active
power variation Ap;,p.

Taking equipment group 4 as an example, we use the event detection algorithm to find

the moment when the running state of the equipment changes, as shown in Fig. 1.
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By setting a reasonable power change threshold, the event detection algorithm can iden-
tify load events with large active power variation value and determine the occurrence point
of the event. Thus, the event detection algorithm is of great help to analyze the running
state of each electrical equipment. In this paper, the event detection algorithm is used to
segment the running state of the equipment group, and then the decision tree algorithm
is used to identify the electrical equipment.

2.2 Load decision tree algorithm for equipment composition identification

The load decision tree algorithm is similar to the load decomposition algorithm. The load
identification algorithm also compares the extracted unknown load characteristic param-
eters with the known load characteristic parameters in the database, and then finds the
known load closest to the extracted load characteristic parameters as the identification
result. Therefore, we need to make decision tree load identification on the basis of load
database. In this paper, the load decision tree algorithm [12—14] is based on three load
databases (active power and reactive power in different states of the equipment, the har-
monic content amplitude database, and the V-I trajectory of the load). The recognition
algorithm based on decision tree requires relatively little computation, so it can avoid us-
ing low-power load characteristics for identification to some extent. This division of data
leads to reduced computational complexity and time, and it is considered a better algo-
rithm when it comes to multi-label classification problems. Now we introduce the decision
tree algorithm into the load identification of our electrical equipment. The flow chart of
the decision tree load identification algorithm is shown in Fig. 2.

The steps of decision tree algorithm for load identification are as follows.

Step 1. The event detection algorithm determines whether the load change event occurs,
if not, enter Step 2, otherwise, enter Step 3.

Step 2. Read the next time data and return to Step 1.

Step 3. Determine whether the equipment in which the event occurred is pure resistive.
If it is pure resistive electrical equipment, Step 4 should be followed, otherwise, go to
Step 5.

Step 4. Compare with the pure resistive electrical equipment power database. Since the
event equipment is pure resistive, only the active power needs to be compared.

Step 5. Output the equipment with the most similar active power as the identification
result.

Step 6. Compared with non-pure resistance equipment power database.

Step 7. Determine if there are many similar equipment in the Step 6. If not, go to Step 8;
otherwise, enter Step 9.

Step 8. Output the equipment with the most similar active power in Step 6 as the iden-
tification result.

Step 9. The V-I trajectories of event loads are extracted, and compared it with the har-
monic content database.

Step 10. Output the equipment with the most similar harmonic content in Step 9 as the
identification result.

The matching in Step 4, Step 6 and Step 9 is based on the Euclidean distance. The
eigenvalue of the event load is regarded as a point in the Euclidean space, and the eigen-
value in the database is regarded as a point in the space. Point x = (x1,x,...,%,) and
¥y = (1,¥2...,Yu) respectively represent the extracted eigenvalues and the eigenvalues in
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Figure 2 Flow chart of load identification decision tree algorithm

the database, we use (1) to represent the approximate degree between the two points. The
smaller the value is, the higher the approximate degree is

2
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To judge whether the matching results are close in Step 7 means to compare them by

dx,y) = 1)

using (1) in Step 6. If the minimum results are less than § (§ small enough), it is considered
to be close. Then, Step 9 uses harmonic content amplitude to identify.

As can be seen, if the equipment is an approximate pure resistance, the most effective
load feature for its identification is the V-I trajectory. The load decision tree algorithm
can first determine whether the load is pure resistance, which only needs to be compared
with the load of resistance in the database, thus eliminating unnecessary comparison. In
the process of comparing the feature parameters extracted by the identification algorithm
with the database, it is impossible to accurately identify the unknown load if the situation
is similar to many known loads. At this time, the unknown load can be further identified
through other load characteristics. Although the previous load feature is not enough to
get the final correct identification result, it can reduce the range of similarity comparison
of feature parameters in the future.
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2.3 Establishment of 0-1 optimization model for equipment state identification
The load characteristic matrix of all equipment is calculated by the load characteristic of
the database, and its load characteristic matrix is shown as

Y1 ... YN

Yarr ... Yun

Where, N = Y4 _, Ni, Ny is the number of the state of equipment , and [ is the numbel
of equipment. For electrical equipment with multiple working states, each working state
is treated as an electrical equipment, that is, N will be greater than the actual number of
electrical equipment. M is the number of load characteristics used in the identification
algorithm

W= (funfor o il 3)

Where, ¥j; is the load characteristic vector of load characteristic j of equipment i, f; is the
load characteristic data in the database, # is the number of the load characteristic j.
Extract characteristic vector Y’ from the measured data to be identified

Y' = [y/l,y’z,...,y}w]T, (4)
5= infore- oSl (5)

Where, ylf is the load characteristic vector of load characteristic j extracted from the mea-
sured data.
The state vector

X= [xl,xz,...,xN]T. (6)

Where, X is the state vector of load (0 means not in this state, 1 means in this state).

Through the above non-invasive load identification based on decision tree, we can know
the state vector X when the equipment state changes. Then the load characteristic vector
Y of this equipment can be known from the load characteristic database

Y:[yl’y%---ryM]T:lI/X. (7)

Where y; is the load characteristic vector of load characteristic j extracted from the load
characteristic database.
We can get the relationship between Y’ and Y is as follows

Y=Y+e=UX+e¢. (8)
After the event detection algorithm detects the occurrence of an event, we extract the

characteristic vector Y to be recognized. According to the established load characteristic
database, the state vector X is solved to minimize the error €. Where, Y’ is a redundant
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measurement. Thus, it is impossible to solve the problem directly based on (8) (If the error
is not considered, there is no solution to (8) because the number of equations exceeds the
number of unknowns), but an approximate solution of (8) can be found. The least squares

method is used to transform the redundant equation into a minimum problem.
. T
min/ =¢'e. ©)

Thus, problem (9) is transformed into a 0—1 quadratic programming problem, and its

mathematical model is shown in (10).
. tT <7 /T 1 T
min/ =YY -2Y WX+ 5(ng/ 29 X)

N
sty i Axi=1,

Xi = {0, 1}

(10)

According to the relevant knowledge of linear algebra, it can be proved that ¥ T2¥ is a
positive definite (or semi-positive definite) matrix. It can be seen that the objective func-
tion is strictly convex function (or convex function) and the feasible region is also a convex
set. So we can get that the programming problem (10) is a convex programming prob-
lem. According to the theory of convex programming in nonlinear programming problem,
problem (10) has the global optimal solution.

Problem (10) is a discrete problem. Most of the traditional methods for solving the dis-
crete problems are combined algorithms, such as the Implicit Enumeration and the Ex-
haustive method. Although this kind of algorithm can accurately find the global optimal
solution of the problem, its computational cost increases with the increase of the problem
size. The other is discrete Heuristic Algorithm, such as Genetic Algorithm. The biggest dis-
advantage of this kind of algorithm is that it can not deal with constraints well and it is easy
to premature convergence. However, there is no such problem in the continuous method,
so the above problems are transformed into the continuous method to solve them. The

equivalent model of its continuity constraint is shown in (11).

1
min/ =YY -2y X + 5 (xwT2wX).

st Y Mo =1,k=1,2,...,]

S ) = 0, o
2.4 Particle swarm optimization algorithm of 0-1 programming model for
equipment state recognition
Particle Swarm Optimization (PSO) is an evolutionary computing technique proposed by
Eberhart and Kennedy [15]. It originates from the study of predation behavior of birds.
Similar to genetic algorithms, PSO is an iterative optimization tool [16, 17].
Let’s say I have L particles in a population, and each particle is an individual in / dimen-
sional R;. Different individuals have different position x = (x1,3,...,%;) and corresponding
to different individual fitness function value Fj are related to the objective function values.

The specific steps are as follows.
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Step 1. (Initialization) The state vector of each load is considered as a population. The
population size N, learning coefficient ¢; and cognitive coefficient ¢, is determined. We
regard each load as a particle, and the position vector of the i load is x; and the veloc-
ity vector is v;, i = 1,2,...,N. State vectors of N loads are randomly generated as initial
population X(0). Set the termination criteria. Let ¢ = 0.

Step 2. (Individual evaluation) Calculate the optimal fitness x,;(¢) and global optimal fit-
ness xg(£) of each individual in the state vector X(¢). If the termination criteria is satisfied,
output the current optimal, otherwise return to Step 3.

Step 3. (Update speed and position) Use (12) and (13) to update the speed and position
of each load.

Vit + 1) = vii(8) + err1(8) ((2) — x5(2)) + cara(8) (wgi(2) — x5(2)), (12)

Kt +1) = x5(8) + vyt + 1). (13)

Where, v;() is the speed vector of the i load before the update, v;(£ + 1) is the speed vector
of the i load after the update, x,;(¢) is the individual optimal, x,;(¢) is the global optimal,
and x;;(¢) is the position vector of the i load before the update.

Step 4. (Update state vector) Update the best position and the global optimal position of
each load, and update the population.

Step 5. (Termination verification) If the termination criteria are met, the individual with
the maximum fitness in output X (¢ + 1) is taken as the optimal solution and the calculation

is terminated, otherwise, let £ = ¢ + 1 and return to Step 2.

3 Numerical experiment
Take the measurement data of equipment group 5 in Annex 3 of Question A as an example.
We analyzed the voltage, current and other data of the entire line collected in equipment
group 5. We identifies the electrical equipment composition of the equipment group, de-
composes the running state of each equipment, and estimates the real-time power con-
sumption.

The data used to support the findings of this study are available at the question A of
the 6th “teddy cup” data mining challenge competition (http://www.tipdm.org/bdrace/
tzjingsai/20170921/1253.html).

3.1 Data description and preparation
NILMD device measured the voltage and current data on the entire line. They can be re-
garded as the superposition of voltage and current data of each electrical equipment. The
measured data provided in the Annex of Question A has single state data and superposed
state data. Based on the database of steady-state characteristic parameters (active power,
reactive power, current harmonics, power factor, V-I trajectory) extracted from questions
A(1) and A(2), this paper conducts power load identification and decomposition for multi-
equipment questions A(3) and A(4).

According to the current, active power, reactive power and other data of the electrical
equipment, the order is sorted from first to last, from small to large. We select the three
ON/OFF state equipment of the Question A equipment YD3, YD5, and YD11, and divide

and label each state of the equipment, as shown in Table 2.
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Table 2 Partial device state division

Name 1Gear 2 Gear

YD3 OFF ON
YD5 OFF ON

YD11 OFF ON
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Figure 3 Event detection diagram of the group of devices to be tested

3.2 Numerical experiment process and results
Based on the database and the power threshold table, we will carry out event detection on
the power data to be tested, which is shown in Fig. 3.

We use the event detection algorithm to find out when the running state of the equip-
ment changes. From Fig. 3, we can see the point in time when the event occurred. In this
paper, after the running state of the equipment group is segmented, the load decision tree
identification algorithm is used to identify the equipment composition of the equipment
group.

The following is an explanation of the three load identification processes with represen-
tative significance in event detection.

Load opening event occurred in the 60th second, and the V-I trajectory is shown in
Fig. 4. The result identified by the Step 3 of the load decision tree algorithm is the non-
pure resistance class load, then the power data is compared with the non-pure resistance
devices of YD1-YD11 devices in the database. We found the YD11 closest to the detected
power variation characteristics. The equipment YD11 (Skyworth TV) was identified from
the equipment group 5 to be tested.

At the second event point is at 339 seconds, we analyze the load event identification at
the point. The V-1 trajectory is shown in Fig. 5. The result we identified is the pure resistive
load. Then it compares the power with the pure resistance equipment in the database, and
we found that the equipment YD5 was the closest to the detected power change. Thus, the
339-second load event is identified as the YD5, that is, the equipment YD5 (incandescent

lamp) is identified from the equipment group 5.
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Figure 4 The first event occurs with V-|

Figure 5 The second event occurs with V-

Figure 6 The third event occurs with V- 1
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At the third event point is at 405 second, the extracted V-I trajectory is shown in Fig. 6.
The result of our identification is a pure resistance load, and then it compares the power
with the pure resistance equipment in the database. The closest power change we can
detect is the equipment YD3. Thus, the 405-second load event is identified as the YD3,
that is, the equipment YD3 (Jiuyang hot kettle) is identified in the equipment group 5.

We used the load decision tree algorithm to identify three equipment in the equipment
group 5. the YD3 (Jiuyang hot kettle), the YD5 (incandescent lamp), and the YD11 (Sky-
worth TV). This exactly matches the actual results of the equipment composition given
in Annex 3. Based on the known equipment composition of the equipment group 5, the
0-1 continuity quadratic programming model (see (11)) is used to identify the state of the
YD3, YD5 and YD11.



Lin et al. Journal of Mathematics in Industry (2020) 10:1 Page 11 of 14

Table 3 Power load characteristics of equipment group

Name Mean active Active power Mean reactive Reactive power
power variance power variance
1 Gear 2 Gear 1 Gear 2 Gear 1 Gear 2 Gear 1 Gear 2 Gear
YD3 2.98 16,819.20 0.15 3973.02 0.03 20.19 0.03 0.95
YD5 2.87 404.92 0.21 0.66 0.03 6.12 0.03 0.26
YD11 7.5 1005.61 0.80 530 114.88 353.55 0.36 5.20

Table 4 Power load characteristics of the time period of the event

Mean active Active power Mean reactive Reactive power
power variance power variance

Initial (all closed) 6.91 0.19 113.89 0.21

The first event occurs 18,482.06 154518 37581 10.77

The second event occurs 151143 129.58 372.16 6.67

The third event occurs 18,182.65 26,866.65 366.23 9.63

Table 5 Equipment state recognition results

The initial event The first event The second eventr The third event
Solution of the (1,0,1,0,1,0T 0,1,0,1,0,0)T (1,0,0,1,0,NT ©,1,0,1,1,0T
algorithm
Identify the YD3, YD5,YD11 YD3,YD5,YD11 YD3 closed, YD5 YD3 and YD5 opened,
results arein a closed opened and YD11 opened YD11 closed
state

In this paper, three kinds of load characteristics are extracted. active power characteris-
tics (mean and variance) and reactive power characteristics (mean and variance), as shown
in Table 3.

The equipment YD3, YD5 and YD11 are all ON/OFF equipment. Let N; = Ny = N3 =
2, N = 6, and M = 2 refers to the load characteristics of active and reactive power used
in the identification algorithm. The state vector X = (xy,%y,%3,%4,%5,%6) L, %; = {0,1}, i =
1,2,...,6.

The power characteristic data of the equipment to be tested is shown in Table 4. Let’s
take the first event as an example, Y’ = (18,482.06, 1545.28, 375.81,10.77)".

The continuity method solves the equivalent model as shown in equation (14).

1
min/ =YY -2y wX + 5 (xwT2wX).

s.t.x] +ap =1,

X3 +%X4 =1, (14)
X5+ X6 =1,

YL —af) = 0.

The results of the PSO for 0—1 programming are shown in Table 5.

We have completed data mining of non-invasive load decomposition. Due to the large
data, some of the operation records and real-time power consumption of the equipment
group 5 are shown in Table 6 and Table 7 respectively.

In this paper, a non-invasive power load decomposition and identification method is
proposed, which integrates event detection algorithm, load decision tree algorithm and
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Table 6 Operation records of equipment group 5

Order Time Device name Working state Operation
1 2018/1/3117.04.13 YD3 OFF

2 2018/1/3117.05.12 YD3 ON ON
3 2018/1/3117.10.51 YD3 OFF OFF
4 2018/1/3117.13.19 YD3 ON ON
5 2018/1/3117.04.13 YD5 OFF

6 2018/1/3117.05.24 YD5 ON ON
7 2018/1/3117.18.07 YD5 OFF OFF
8 2018/1/3117.04.13 YD11 OFF

9 2018/1/3117.05.12 YD11 ON ON
10 2018/1/3117.17.57 YD11 OFF OFF

Table 7 Real-time power consumption of equipment group 5

Time Device Real-time Device Real-time Device Real-time
name electricity name electricity name electricity
consumption consumption consumption
2018/1/3117.13.09 YD1 0.0000 YD5 0.0120 YD11 0.0299
2018/1/3117.13.10 YD1 0.0000 YD5 0.0120 YD11 0.0299
2018/1/3117.13.11 YD1 0.0000 YD5 0.0113 YD11 0.0282
2018/1/3117.13.12 YD1 0.0000 YD5 0.0088 YD11 0.0219
2018/1/3117.13.13 YD1 0.0000 YD5 0.0088 YD11 0.0219
2018/1/3117.13.14 YD1 0.0000 YD5 0.0088 YD11 0.0219
2018/1/3117.13.15 YD1 0.0000 YD5 0.0088 YD11 0.0219
2018/1/3117.13.16 YD1 0.0000 YD5 0.0088 YD11 0.0219
2018/1/3117.13.17 YD1 0.0000 YD5 0.0088 YD11 0.0219
2018/1/3117.13.18 YD1 0.0000 YD5 0.0108 YD11 0.0268
2018/1/3117.13.19 YD1 04723 YD5 0.0114 YD11 0.0282
2018/1/3117.13.20 YD1 04718 YD5 00114 YD11 0.0282
2018/1/3117.13.21 YD1 04709 YD5 0.0113 YD11 0.0282
2018/1/3117.13.22 YD1 04702 YD5 0.0113 YD11 0.0281
2018/1/3117.13.23 YD1 04697 YD5 0.0113 YD11 0.0281

Table 8 Comparison with some reference algorithms

Algorithm Extract database Accuracy (%) Whether online Device type

Bayes The steady state 80-95 All can ON/OFF, The finite state
HMM The steady state 70-95 ON ON/OFF, The finite state
Neural Steady state and transient 78-97 NO ON/OFF, The finite state
Networks The steady state 70-85 All can Multi-state equipment
KNN Steady state and transient 70-85 All can Multi-state equipment
This paper Steady state and transient 85-99 All can Multi-state equipment

0-1 quadratic programming model. Through numerical experiments, the algorithm in
this paper is compared with the algorithms in other references, as shown in Table 8. We
did the same experiment with other equipment groups data in Question A. The experi-
mental results show that this method can effectively improve the accuracy of power load
identification.

4 Conclusion

The decision tree analysis method and 0—1 programming model are established in this
paper. The algorithm can determine the state, operation and operation time of each elec-
trical equipment. It can be seen from the analysis results that the algorithm in this paper
has higher accuracy, higher anti-interference and stronger identification ability. NILMD
technology based on decision tree has the advantages of easy operation, low cost (short
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payback period), high reliability, good data integrity and broad development prospects,
which is of irreplaceable engineering significance. It is convenient for the residents to
monitor the running state and the situation of electricity consumption. In addition, it can
remind users to arrange electricity reasonably, adjust the difference between valley and
peak electricity consumption, and reduce the damage of network line, so as to achieve the
purpose of energy saving and consumption reduction.
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