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Abstract
As an extension of (Progress in industrial mathematics at ECMI 2018, pp. 469–475,
2019), this paper is concerned with a new mathematical model for intraday electricity
trading involving both renewable and conventional generation. The model allows to
incorporate market data e.g. for half-spread and immediate price impact. The optimal
trading and generation strategy of an agent is derived as the viscosity solution of a
second-order Hamilton–Jacobi–Bellman (HJB) equation for which no closed-form
solution can be given. We construct a numerical approximation allowing us to use
continuous input data. Numerical results for a portfolio consisting of three
conventional units and wind power are provided.
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1 Introduction
To counter global climate change, renewable power sources substituted fossil fuel plants
and provide now a substantial part of the electricity production. Due to the intermittency
of renewable power, short-term electricity contracts have gained importance on electric-
ity exchanges such as the European Power Exchange (EPEX Spota). In particular, contin-
uous intraday trading, which allows trading of contracts until 30 minutes before delivery,
is used to respond to short-term changes. The trading volume within the German intra-
day market (IDM) area increased from 26 TWh in 2014 to more than 50 TWh in 2018.
A similar trend has been observed in other market areas or countries in which some mar-
kets or sub segments, e.g., continuous trading of hourly products in Belgium (since July
2018) or the 30-min continuous trading in Germany and France (since April 2017), have
been developed. Another instrument for integrating renewable energy markets is the Xbid
project, which aims at establishing a common pan-European continuous intraday market
to strengthen liquidity. All these developments trigger a need for mathematical modeling
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of such trading as a basis for deeper understanding, optimization and control. Moreover,
a mathematical model is the basis for numerical simulations.

However, in contrast to day-ahead market (DAM) modeling, literature dedicated to the
continuous intraday electricity markets is scarce. In particular, appropriate mathematical
models describing the main characteristics of these short-term markets have not been de-
veloped so far. Most important price drivers have been identified in [10] explaining about
75% of the price variance, [20]. Moreover, strong statistical evidence was found that infor-
mation on the specific fundamental factors significantly affect the intraday prices, which
appear as transaction prices within a trading period, [13, 14].

Concerning mathematical modeling early work in the field of integration of renewables
into short-term markets using stochastic optimization can be found in [18]. The mini-
mization of incurred intraday costs of wind producers while maintaining the balance of
production forecast and sales is considered in [11]. This short-term trading model also
considers the impact of the wind producer on prices without intraday price uncertainty,
however. A discrete time decision model with intraday prices following a geometric Brow-
nian model and wind production error forecast following an arithmetic Brownian motion
has been introduced in [7, 8]. In that framework, the power producer is supposed to have
no impact on intraday prices.

To overcome the aforementioned weaknesses, we have been inspired by [1] to model
the continuous intraday market for electricity. In [1], a Hamilton–Jacobi–Bellman (HJB)
equation was derived for determining an optimal trading strategy by modeling the dynam-
ics of the electricity market by stochastic differential equations (SDEs) and formulating a
corresponding value function to be optimized. The specific market model allows one to
solve the arising HJB analytically, i.e., the authors derive a solution formula.

The starting point of this paper (which builds upon and extends [9]) is a statistical anal-
ysis of EPEX SPOT data, which shows that some of the model assumptions in [1] are in
fact not satisfied under real market conditions. Thus, we introduce a more sophisticated
model. The arising HJB equation can no longer be solved analytically; the value function
is shown to be the unique viscosity solution of this HJB equation. Thus, we need an appro-
priate numerical scheme. From an economical point of view, the main new ingredients of
our model are:

1. Portfolio of renewable and conventional energy represented by a cost function that
reflects the stepwise merit order of a portfolio rather than a systemwide quadratic
function;

2. Pricing model using time-varying half-spread and being capable of representing
time-varying liquidity;

3. Approximation of market data for half-spread and instantaneous price impact;
4. Variable penalty depending on the state of the market at final time;
5. The model relies on data which are observable on the market (see Sect. 3).
The main focus of this paper is a novel application-related modeling of the intraday

trading and the determination of a numerical approximation for this problem. We show
an example of a real-world problem, compute the optimal trading strategy and investigate
the impact of various involved parameters. The remainder of this paper is as follows: In
Sect. 2, we introduce the new model and the arising HJB equation and Sect. 3 details the
involved parameters, which we obtained from empirical analyses. In Sect. 4, we describe
the numerical method for determining the viscosity solution of the arising HJB. More-
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over, we present corresponding numerical experiments. We finish by conclusions and an
outlook in Sect. 5.

2 A new mathematical model
In order to take both renewable and conventional generation into account, our model is
based upon the consideration of an agent owning both kinds of power plants and aiming
at selling a combination of renewableb and conventionally produced electricity. In detail,
depending on the weather forecast and the expected price at the final time, such a combi-
nation of electricity is sold at the day-ahead market (DAM). With the result of this initial
trading, the agent starts to act on the continuous intraday trading market (IDM) aiming
at maximizing her profit by determining an optimal trading strategy as well as an op-
timal production strategy of conventional power.c All quantities entering the model are
described below.

2.1 Day-ahead and intraday electricity trading
Consider a delivery hour h on day d. The day before, d – 1, the day-ahead auction takes
place with gate closure at 12 noon. In this auction, each participant can offer (ask) or
request (bid) a certain demand of electricity at a specific price. Then, a clearing price is
set and power is exchanged accordingly. Next, the continuous intraday trading starts at
3 p.m. on day d – 1 and closes half an hour before the actual delivery hour h, see Fig. 1.

2.2 Dynamics of the electricity market
The dynamics of the market includes the forecasted renewable power production and the
price process. The latter one is influenced by the current trading activity of the agent. We
use stochastic processes and derive stochastic differential equations (SDEs), see [19] for
background.

2.2.1 Renewable production forecast
By D = (Dt)0≤t≤T we denote the forecasted production of renewable produced electricity
during the trading session. Following the idea of [15, 22], we assume that forecast updates
are a consequence of new information and hence lead to random changes in t. Therefore,
the uncertainty is modeled by means of the dynamics

dDt = σD dWt,D, (1)

where σD is the volatility and (Wt,D)0≤t≤T is a standard Brownian motion. For the sake
of simplicity, this variable is unbounded, whereas in the real world, there are restrictions

Figure 1 Scheme of continuous intraday trading
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by zero (no wind) and the maximum capacity of the wind farm. We denote by Dt,d the
solution of the SDE starting from d (the current capacity) at t.

2.2.2 Agent’s position
The financial position resulting from the agent’s trading activity is denoted by X =
(Xt)0≤t≤T . The agent participates in the intraday market (IDM) with continuous trading
at rate qt ∈ Q := (qmin, qmax) ⊂ R, where qt > 0 implies actively buying and qt < 0 implies
actively selling.d The dynamics of her financial position are then

dXt = qt dt (2)

and we denote by Xq;t,x the solution of the SDE starting from x at t depending on the
current trading rate qt . For t = 0, x0 is the amount of electricity sold on the day-ahead
market.

2.2.3 Permanently impacted mid price
First, we denote by Y = (Yt)0≤t≤T the permanently impacted mid price, i.e., the sum of
the mid price of energy and the permanent impact of the agent’s trading, the latter one
modeled by some function ψ : R →R. The dynamics of Y is modeled by the SDE

dYt =
(
μY + ψ(qt)

)
dt + σY dWt,Y , (3)

where μY is the drift, σY is the volatility and (Wt,Y )0≤t≤T is a standard Brownian motion.
We denote by Y q;t,y the solution of the SDE starting from y at time t depending on qt .

2.2.4 Transaction costs
When actively buying (selling) on the IDM, there are costs in addition to the permanent
impact. Those are referred to as transaction costs and will be incorporated in our model.

2.2.5 Execution price
The execution price is the price the agent pays (receives) when actively buying (selling). We
require a more advanced approach of the pricing model as in [1], where the half-spread
(see below) and its time variability as well as the time variability of the execution costs are
ignored. Incorporating these effects, the execution price depends on several quantities to
be introduced now.

The half-spread is defined as the half of difference of the best ask and the best bid price.
This data is observable on the market. While in reality the bid-ask spread and hence also
the half-spread is stochastic, we model it in terms of a deterministic function h : [0, T] →
R

+, which reflects the typical shape over the trading period.
The other component of our model for the execution price is the execution cost reflect-

ing the costs that are incurred due do executing limit orders with prices worse than the
best price when buying (selling) actively. While they are also stochastic in reality, they
will be described in terms of a deterministic function ϕ : [0, T] × (qmin, qmax) → R which
reflects the typical shape over the trading period.

With all these quantities at hand, the execution price Pq;t,y = (Pq;t,y
s )0≤s≤T is modeled as

Pq;t,y
s := Y q;t,y

s + sign(qs)h(s) + ϕ(t, qs), (4)
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where (as usual)

sign(qs) :=

⎧
⎨

⎩

|qs|
qs

, if qs �= 0,

0, otherwise.

Hence, (4) means that the execution price is the permanently impacted mid price plus
(minus) the time-varying half-spread and plus the time-varying execution costs, which
extends the model in [1].

2.3 The profit: the objective function for optimization
It is the aim of the agent to maximize her profit consisting of the running and the ter-
minal profit explained next. This will later serve as the objective function for the arising
optimization problem.

2.3.1 Running profit
The total running profit from the continuous trading in the intraday market is given by

f q(s; t, y) := –qsPq;t,y
s (5)

with the trading rate q = (qt)0≤t≤T .

2.3.2 Terminal profit
The profit gained at the end of the trading period consists of scheduling conventional
power production which incurs costs and placing a final market order.

Conventionally produced energy At the end of the trading session, the agent chooses
how much electricity ξ ∈ R

+
0 she will produce during the delivery period. For doing so,

she has n conventional units available with each being able to operate between their spe-
cific minimum κmin

i and maximum generation capacity κmax
i , i = 1, . . . , n. The marginal

costs ci of unit i, i.e., the costs for producing 1 MWh of electricity, are assumed to be
time-independent (constant). The chosen strategy of the agent thus consists of deciding
to activate or deactivate unit i (modeled by a binary variable ai ∈ {0, 1}) and choosing the
respective amount ξi ∈ [κmin

i ,κmax
i ] for each unit. Thus, the resulting amount of produced

electricity is

ξ =
n∑

i=1

aiξi. (6)

A straightforward strategy would be that the agent will activate her units in ascending
order of marginal costs, starting with the ‘cheapest’ one. The arising total cost of power
production then reads

C : R+
0 →R

+
0 , C(ξ ) =

n∑

i=1

aiciξi, (7)

which is a piecewise linear but discontinuous function, the derivative of which is a sum of
piecewise constants and a number of Delta distributions.
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Final market order Furthermore, the agent also has the option to place a final buy or sell
market order. In fact, obtaining values for DT , XT and YT , the agent optimally tries to reach
her desired demand for power by buying/selling the amount ξ + XT + DT ∈ R, i.e., what
has been traded already minus conventional and renewable production, by a final market
order. The costs associated with the final market order are the costs due to crossing the
half-spread h(T) and the costs due to potentially executing limit orders with prices worse
than the best bid/ask price. The latter costs are modeled by the function α : R →R.

Terminal payoff It turns out to be convenient to introduce the variable Zt := Xt + Dt ,
i.e., the sum of the forecasted production from renewables and what has been sold by the
agent so far. This, in particular reduces the dimension of the optimization problem to be
solved numerically, which is crucial for efficiency. The terminal payoff/profit then reads

g(ξ , YT , ZT ) := –C(ξ ) + (ξ + ZT )
(
YT – sign(ξ + ZT )h(T) + α(ξ + ZT )

)
. (8)

2.4 The resulting optimization problem
Now, we have all ingredients at hand to formulate the optimization problem in terms of a
HJB equation.

2.4.1 Value function
The value function corresponds to the agent’s cash, so that an optimal strategy yields max-
imal cash. Denoting by Zq;t,z the solution of the SDE dZt = dDt + dXt = qt dt + σD dWt,D

starting from z at t, the resulting value function V : [0, T] × U → R reads for Q :=
(qmin, qmax), see, e.g. [24, Ch. 4],

V (t, y, z) := sup
(q,ξ )∈Q×R

E

[∫ T

t
f q(s; t, y) ds + g

(
ξ , Y q;t,y

T , Zq;t,z
T

)]
, (9)

where U := Y ×Z ⊂R
2 is a closed convex set (usually a rectangle, in order to ensure well-

posedness of the optimization in (9), [6]). In fact, from our above modeling, we would ob-
tain Y = Z = R (range of values for the execution price and energy production). However,
without additional conditions, the optimization problem is not well-posed on such un-
bounded domains. Moreover, the numerical solution using standard discretization tech-
niques is—at least—not straightforward on unbounded domains and would require so-
phisticated schemes, see e.g. [12].

In order to overcome these difficulties, we define U in terms of closed sets (intervals) Y
and Z and cut-off the problem on their boundaries. This requires to set boundary condi-
tions to ensure well-posedness to be explained below.

2.4.2 The Hamilton–Jacobi–Bellman (HJB) equation
Following the well-known dynamic programming principle (e.g. [24, Ch. 4]), we derive the
HJB equation: Find V : [0, T] × U →R, V = V (t, y, z), such that

∂tV + μY ∂yV +
1
2
σ 2

Y ∂yyV +
1
2
σ 2

D∂zzV

+ sup
q(t)∈Q

{
–
(
y + sign

(
q(t)

)
h(t) + ϕ

(
t, q(t)

))
q(t) + q(t)∂zV + ψ

(
q(t)

)
∂yV

}

= 0, (10)
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for (t, y, z) ∈ [0, T)×U with terminal condition V (T , y, z) = g(T , y, z) for all (y, z) ∈ U . Note,
that in (10) we used the notation q(t) instead of the previously used qt for the following
reason: In the numerical realization, we treat q as a function q(t) and not as stochastic
process qt .

One can show that (10) with terminal and Dirichlet boundary conditions is well-posed
and that the unique viscosity solution is the value function in (9), [5]. Due to the form of
(10), we cannot expect a first-order condition for the control q and we have to resort to
numerical solvers.

2.4.3 Boundary conditions
As already mentioned above, we need to truncate the HJB to a bounded domain U , which
requires to prescribe appropriate boundary conditions on ∂U . Such an approach is well-
known also from numerical option pricing when solving the Black–Scholes (BS) equation.
In that case, the definition of corresponding Dirichlet boundary conditions is canonical
since small errors in the boundary values cause only small errors in the solution on all of
U (i.e., the BS equation is stable w.r.t. boundary values). The situation for the HJB equa-
tion is fundamentally different as small changes in the Dirichlet data immediately severely
change the solution on the whole domain. Hence, the definition of appropriate boundary
conditions is a delicate task.

We are going to describe our approach to prescribe appropriate boundary conditions.
Our point of departure is the before-mentioned IDM-model in [1], which uses a much
simpler HJB as the one derived above. This causes the fact that the HJB in [1] allows for a
closed formula for the solution. We consider such a somehow simpler HJB, solve it explic-
itly and use the boundary values of that HJB as Dirichlet data for our more sophisticated
HJB. Of course, one could also use other simplified models as long as the resulting bound-
ary conditions turn out to be meaningful. To be specific, we consider a simpler HJB model
consisting of the following ingredients and simplifications:

1. By omitting the sign-part in (10) and replacing it by the positive sign, the function
within the supremum is differentiable.

2. We replace h(t) by h̄ := h(T), i.e., the half-spread at the terminal time.
3. The next simplification concerns the temporary price impact ϕ. The most simple

situation would be a linear approximation, e.g., ϕ(t, q) := kq, i.e., stationary and
linear in q. Here, k ∈R

+ is a constant, which has been derived by approximating our
mid price data with a second order polynomial p and then setting k := p(T).

4. The permanent price impact vanishes, i.e., ψ ≡ 0.
Thus, the simplified HJB now takes the form

∂tv + μY ∂yv +
σ 2

Y
2

∂yyv +
σ 2

D
2

∂zzv + sup
q∈Q

{
–(y + h̄ + kq)q + q∂zv

}
= 0. (11)

In (11), we can explicitly determine the supremum by finding the root of the first-order
derivative w.r.t. q of the term in {· · · }. The corresponding first-order necessary conditions
yield the optimal control as follows (recall from 3. that k > 0)

q∗ =
–y – h̄ + ∂zv

2k
.
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Inserting this optimal control into (11) yields the following PDE for the unknown v as a
function of (t, y, z)

∂tv + μY ∂yv +
σ 2

Y
2

∂yyv +
σ 2

D
2

∂zzv +
1

4k
(y + h̄ – ∂zv)2 = 0. (12)

To solve (12), we make the following polynomial ansatz

v(t, y, z) =
∑

|i|≤2

ai(T – t)yi1 zi2 , i = (i1, i2), i1, i2 ∈N0, |i| := i1 + i2,

i.e., a polynomial of degree 2 with the coefficient functions ai : [0, T] → R to be deter-
mined. Plugging this form of v into (12) yields a system of six Riccati equations for the
unknown functions ai, i.e.,

ȧ02(T – t) –
1

4k
(
–2a02(T – t)

)2 = 0,

ȧ20(T – t) –
1

4k
(
–a11(T – t) + 1

)2 = 0,

ȧ11(T – t) +
1
k

a02(T – t)
(
–a11(T – t) + 1

)
= 0,

ȧ01(T – t) + μY a11(T – t) –
1
k

a02(T – t)
(
h – a01(T – t)

)
= 0,

ȧ10(T – t) + μY a20(T – t) –
1

2k
(
–a11(T – t) + 1

)(
h – a01(T – t)

)
= 0,

ȧ00(T – t) + μY a10(T – t) + σ 2
Y a20(T – t) + σ 2

Za02(T – t) –
1

4k
(
h – a01(T – t)

)2 = 0.

In order to solve this system of ordinary differential equations, we need initial conditions
for the functions ai. Due to the arguments (T – t) in all those functions, the desired initial
conditions boil down to terminal conditions of v, i.e., the function g in (8). Recall, that g
in particular contains the function C in (7), which is piecewise polynomial but discontin-
uous (see, e.g. Fig. 6 for an example of such a function—clearly exhibiting jumps), which
prohibits a closed form solution of the Riccati system. Thus, we use a least squares approx-
imation of g in terms of the above polynomial v(T , y, z). Doing so, we obtain initial values
for the above mentioned functions, say ai(0) = ai,0. With these values at hand, we solve the
initial-value problem of the Riccati system by Maple™ and obtain v. The boundary values
of v w.r.t. the variables y and z are then used as Dirichlet conditions for (10).

3 Data
Our model described above relies on several parameters, which we summarize in Table 1.
In this section, we describe how this data can be obtained from market observations and
empirical data analysis.

3.1 Generation portfolio
As mentioned before, the agent’s portfolio consists of renewable and conventional gener-
ation capacity. We describe how to retrieve realistic market data.
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Table 1 Parameters involved in our model

Wind energy Dt σD Volatility
D0 Initial value

Conventional units n Number of agent’s conventional units
ci Marginal costs of conventional units, i = 1, . . . ,n
κmin
i , κmax

i Minimal/maximal capacity of units i = 1, . . . ,n
Prices Yt , Pt
Payoff g
Profit f
Value function V

μY Drift of permanently impacted mid price
σY Volatility of permanently impacted mid price
ψ Permanent price impact of agent’s trading
Y0 Initial value
h Half-spread function
ϕ Execution cost function
α Penalty function

Table 2 Unit Parameters for the conventional units i = 1, 2, 3, n = 3

Unit Hard coal CCGT OCGT
i = 1 i = 2 i = 3

Marginal cost ci [e/MWh] 25 35 60
Minimal capacity κmin

i [MW] 250 100 60
Maximal capacity κmax

i [MW] 500 400 600

3.1.1 Renewable electricity standard (RES) portfolio
We equip the sample agent’s portfolio with 500 MW of aggregated renewable generation
capacity. As mentioned before, for the sake of simplicity and due to limited availability of
historical data, we restrict the aggregated capacity to arise solely from wind farms. Fur-
thermore, following [17], we assume that the wind farms in the portfolio are dissimilarly
located within the considered hypothetical market area. This last assumption allows us to
estimate the parameter σD for Dt in (1) using aggregated forecast data, which is, in contrast
to site-specific data, publicly available.

Specifically, we choose hourly wind power forecasts for the French market area provided
by [21]. To be able to transfer the characteristics of the historical data set to our current
application, we first normalize all forecasts on the average installed capacity per month.
We then determine all updates between two adjacent forecasts of the same forecast path.
Finally, we observe a volatility of approximately 0.01 per installed MW and hour (2016:
0.008, 2017: 0.008, 2018: 0.010) in the data. With respect to the renewable generation ca-
pacity of 500 MW, we therefore set σD = 5 MW.e Finally, we choose D0 also from publicly
available data.

3.1.2 Conventional generation
For the agent’s conventional portfolio, we consider n = 3 units, namely a hard coal fired
plant, a combined cycle gas turbine (CCGT) and an open cycle gas turbine (OCGT), with the
parameters shown in Table 2. The marginal costs ci of each unit represent idealized values
for the respective technology class. They also consider that an increase in flexibility—here
the reduction of the so-called deadband between zero and production at minimal capacity
κmin

i —reduces the efficiency of the unit. Moreover, we assume that the start-up decision
ai ∈ {0, 1} of a unit does not require a lead time.

3.2 Mid price drift
We assume that the drift of the mid price on the IDM consists of two parts as implied by
(3), namely mid price changes due to time evolution on one hand and mid price changes
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Figure 2 Scattering of net order flow (buying minus
selling) versus difference between volume-weighted
average price on the IDM and price on DAM for all
contracts with delivery start at 12 noon in Q2/2016

due to agent’s trading (causing irreversible price impacts) on the other. Building upon [4],
we perform an empirical analysis of these two parts. In particular, we study price changes
over longer periods of time as well as their relation to net order flow (i.e., buy minus sell).
While in that study mid price changes and net order flow are considered over periods of
five minutes, we consider the differences between the day-ahead market (DAM) prices
and volume-weighted average IDM pricesf as well as the net order flow over the entire
trading window. While we conjecture the DAM prices to be close to the mid prices after
market opening, the volume-weighted average IDM prices are usually different from the
mid price before end of trading. Nevertheless, we prefer mid prices as we reckon that they
better reveal the evolution of the price over a longer period of time and also mirror the
relation of this evolution to net order flow.

Of course, the observed price changes appear between the beginning and the end of the
IDM trading. As a consequence, the data does not show whether either of the components
typically changes over the trading window. Concerning the (deterministic) dependence of
the price on time, we simply choose a linear dependence, i.e., constant drift as μY (t) ≡ μY .

Next, we assume a linear relation of order flow and price change, which is at least not
contradicted by the scatter plot in Fig. 2. Thus, we assume ψ(qt) = bqt for the permanent
price impact with a constant b ∈R.

We obtain estimates for b and μY from least squares fits to the data. For b, we get
0.0017e/MWh2 and significance at a 0.1% level, indicating that the net order flow has a
positive impact on the price change. The drift μY is obtained as 0.0433e/MWh per hour
and to be significant at a 1% level, indicating that the price slightly tends to increase over
time. Concerning the sign of the drift, we find mixed evidence in the literature, [10, 14].

3.3 Transaction costs
As we pointed out earlier, it is a major difference between our model and previous research
that we also include transaction costs. The data analysis on which their modeling is based
is presented below. We recall that transaction costs include execution costs modeled by
the function ϕ and the half-spread h, see (4).

3.3.1 Data
We use order book data from the EPEX SPOT-operated market for hourly delivery con-
tracts with Germany/Austriag as delivery area from the second quarter of 2016 (referred
to as Q2/2016 in the following) to empirically analyze the transaction costs mentioned in
Sect. 2.2. The dataset comprises (i) all orders with Germany or Austria as delivery area
which entered into the order book, (ii) all orders with Germany or Austria as delivery area
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which caused execution of an order resting in the order book with delivery area other than
Germany or Austria and (iii) all orders with delivery area other than Germany or Austria
which caused execution of an order in the order book with Germany or Austria as delivery
area.

Hence, not all orders in the order book for the German/Austrian delivery area which
were visible for market participants are contained in the dataset. Based upon these data,
we are now going to describe how we obtained values for the quantities entering the trans-
action costs.

3.3.2 Half-spread
In identifying typical half-spread functions h entering the optimization problem, we build
on research on bid-ask spreads (BAS) on the NYSEh stock market. In [16], the pattern of
BAS of NYSE stocks over a trading day is analyzed. To this end, the authors divide each
trading day in their sample into one-minute intervals and compute for each interval and
stock what they refer to as the time-weighted BAS to be explained next. Consider some
time interval Ii := (Ti–1, Ti] ⊂ [0, T] and assume that the BAS changes Ni times at Ti–1 <
t(i)
1 < · · · < t(i)

Ni
≤ Ti, where we denote the BAS on (t(i)

j , t(i)
j+1) by BASj, j = 0, . . . , Ni setting

t(i)
0 := Ti–1 and t(i)

Ni+1 := Ti. Then, the time-weighted BAS on that interval Ii, denoted by
BASi, is defined as

BASi :=
1

Ti – Ti–1

Ni∑

j=0

BASj
(
min

(
t(i)
j+1, Ti

)
– max

(
t(i)
j , Ti–1

))
.

Then, [16] suggests to determine BASi for each interval of the trading day and for all stocks
in their sample. In this paper, we adopt the approach in [16] and divide the trading period
into intervals of 5-minute length. Furthermore, we only consider the hourly delivery con-
tracts with delivery starting at 12 noon in Q2/2016. The resulting data is visualized in
Fig. 3 as a two-dimensional histogram of all the BASi in the sample for the last 17.5 hours
of trading. The blue line reflects the means of the BASi in each interval.

We observe a significant decrease of the mean time-weighted BAS from ≈8e to
≈5e/MWh at the beginning of the time window and a subsequent nearly constant be-
havior for about ten hours. Given a tick size of 0.1e/MWh (Q2/2016), it is remarkable
that this plateau is fifty times higher than the tick size. Five hours before the end of the
trading, the mean time-weighted BAS decreases to ≈1e/MWh followed by a sharp in-
crease to reach the final ≈2e/MWh. The pattern over the last five trading hours is quite
similar to the crude reverse J shape reported in [16] for NYSE stocks.

Figure 3 Two-dimensional histogram of 5-minute
time-weighted bid-ask spreads over the last 17.5 hours of
the trading period, means per interval (blue) and
degree-7 polynomial fit (red line) to the data for all
contracts with delivery start at 12 noon in Q2/2016



Glas et al. Journal of Mathematics in Industry            (2020) 10:3 Page 12 of 17

Figure 4 Histogram of the relation between market order volume and execution costs applying a linear
model, dividing the time into 15-minute intervals and the coefficients into intervals of 0.002e/MWh2

In order to model the temporal behavior of the BASi, we employ a polynomial of degree
seven according to the Akaike information criterion (AIC) [2], which is depicted by the
red line in Fig. 3. This polynomial is the half-spread function h mentioned in the previous
section. Clearly, this has a significant smoothing effect and could e.g. be replaced by other
approximations as well.

3.3.3 Execution costs
The execution price in (4) depends on the typical half-spread and the typical execution
costs, which reflect the negative impact on the price realized by a market participant when
buying or selling with market orders. For the empirical analysis of the execution costs we
need to consider the order book. Similar to the analysis for the half-spread, we start by de-
termining time-weighted prices and volumes over 5-minute intervals on the different order
book levels.i Given some time-weighted price on an order book level, it may occur that
the time-weighted price on a lower level is better. Therefore, we sort prices and volumes
in descending/ascending order on the buy/sell side. This approach requires the availabil-
ity of the entire order book over the trading period. Otherwise, missing data techniques
could possibly be used.

We assume a linear relationship between trading rate and execution costs,

ϕ(t, qt) = k(t)qt , (13)

with the parameter (function) k(t). For estimating k(t), we build upon [4] and analyze how
the order books absorb market orders of different sizes. To this end, we consider market
orders with volume 1, . . . , 200 MWh for each interval and market side. Then, we collect
those order book levels required to cover the volume of the market order. We multiply
the order book level prices in that collection by their volumes, sum them up and divide by
the volume of the market order. From the resulting price we subtract the best price on the
same market side to obtain the respective market order’s execution costs. Then, we fit a
linear model by least squares to obtain k(t). Considering again hourly delivery contracts
with delivery start at 12 noon in Q2/2016, Fig. 4 shows the obtained values for k(t) in the
form of two-dimensional histograms as well as means per time interval (blue line).

Similar to the average half-spread, the average execution costs exhibit a decline after
market opening to 0.025–0.05e/MWh2. After a rather stable ≈10 hours period, they fur-
ther decline to ≈0.01e/MWh2. We observe a slight increase just before the end of trading.
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Hence, the shape of the average execution costs is rather similar to that of the average half-
spread. We model the typical temporal behavior of the execution costs with a polynomial
of degree six for the buy side and degree eleven for the sell side (according to the AIC).

Remark 1 Note that the above approach is not compatible with the model in (13). For
determining a model for the execution costs, we compared market orders and the order
book. However, the agent’s action in our model is trading at some rate. Of course, in reality,
market participants will not act by trading at some rate, but merely actively place market
orders by some strategy. This means, we cannot observe how different rates enter the order
book. On the other hand, the above approach is mainly used to calibrate parameters for
our model.

A possible strategy to remedy this shortcoming could be to determine a relation between
execution costs in some time interval and a constant trading rate (instead of the volume
itself ). For example, for execution costs evolving from a 1 MWh market order, a trading
rate of 1/5 MWh per minute would be required to yield that volume after 5 minutes of
trading.

3.3.4 Terminal order book
At the end of the trading period, we assume that the agent liquidates remaining inventory
by means of a final market order (instead of letting the volume run into the balancing
market as is done in [1]). This means that we need a typical order book at the end of
trading for calibrating our model.

To this end, we consider the buy and sell side separately and determine for each contract
the difference between the prices on the different order book levels and the best price.
Then, we average all these price differences and volumes on the same order book level.
The results are shown in Fig. 5.

Given that the average volumes associated with the best bid and ask are around 16 MWh,
typically there is still some volume at the end of trading which can be sold/bought at zero
execution costs. The volumes associated with the order book levels beyond the best-price
level slightly increase. While the average price differences associated with the best bid
and ask are obviously 0e/MWh, in absolute terms they are ≈1e/MWh for the first level,
≈5e/MWh on the fifth level and 20–30e/MWh on the tenth level. Hence, prices beyond
the best level obviously worsen quite substantially.

We consider both the typical order book on the buy and sell side at the end of trading
to specify the penalty function α. Recall, that δξ := ξ + XT + DT denotes the ‘untraded’
amount (for which a penalty needs to be paid) with ξ being defined by (6). Furthermore,
we only consider the first L levels of both the buy and sell order book and truncate the
volume on the last level (L) such that the overall volume is 100 MWh on both market
sides. Let δpbuy


 ≤ 0 (δpsell

 ≥ 0) denote the difference between the price on the 
-th buy

(sell) order book level and the price on level zero, 
 = 1, . . . , L. Furthermore, let λ
buy

 , λsell




be the maximum volume available on respective side of the 
-th order book level. Then,
α is defined as

α(δξ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–
∑L


=1 δpbuy



max{0,min{λbuy



,δξ–
∑
–1

ν=1 λ
buy
ν }}

δξ
, if δξ > 0,

∑L

=1 δpsell



max{0,min{λsell



,δξ–

∑
–1
ν=1 λsell

ν }}
1 δξ , if δξ < 0,

0, else.

(14)
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Figure 5 Cumulative volume on the different levels of the buy (left) and sell (right) order book and difference
between price on an order book level and best price for all contracts in the sample. The thick red line reflects
the mean cumulative volume and price difference on the different order book levels. Plots are cut off at
cumulative volume of 100 MWh

It is easily seen that α is continuous at δξ = 0. The sign in (14) results from (8) and the
motivation that the penalty α should lower the agent’s profit. This implies that α should
be positive if the agent needs to buy and negative if she needs to sell at the end of the
trading period.

4 Numerical solution of the HJB equation
In this section, we describe our numerical method for (approximately) solving the aris-
ing HJB. Moreover, we report on results of a sample numerical experiment concerning
(10) using the following data: U := [–50, 250] × [–1645, 145] ⊂ R

2 and T = 17.5 h arising
from reasonable market data. We have of course validated and tested our implementation
on various other scenarios. Dirichlet boundary conditions are prescribed as described in
Sect. 2.4.

We use a finite difference discretization from [23] with 56 × 301 points in space and
100 points in time. In particular, central differences are used for the approximation of the
first-order terms with additional artificial diffusion, which results in a stable, consistent
and monotone scheme converging to the viscosity solution, [23]. We use the well-known
policy iteration [3] in every time-step and the control is maximized over a discrete set
(as no first-order conditions are available). Finally, the optimal conventional generation is
computed as the maximum value of (8) w.r.t. ξ using Matlab’sj intlinprog with the interior
point method.

4.1 Data
We use the artificial data μY := 0.0, σD := σY := 0.1.k The functions ϕ(·, ·) and h(·) are least-
squares 5th order polynomial approximations of market data from Q2/2015 (ψ(t) = 0).
The penalty is chosen as market data as α(x) := 0.5 · (|x| – 20)χ20<|x|≤45 + ((|x| – 45) +
12.5)χ45<|x|≤145.

Our results for the optimal conventional generation ξ are displayed in Fig. 6. Let us
comment on the case where ZT = –500 MWh. As long as the final mid price is be-
low 25e/MWh, the agents buys the maximal amount of 145 MWh (recall, that y ∈
[–1645, 145]) and uses the power plant with the lowest marginal costs (hard coal) ac-
cordingly, i.e., the remaining 355 MWh. Once the final mid price is 25 to 35e/MWh (i.e.,
above the marginal cost of hard coal, but below the marginal cost of CCGT) it is opti-
mal to produce at maximum capacity with the cheapest conventional power plant (i.e.,
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Figure 6 Optimal conventional generation ξ as a function of YT and ZT (left) as well as for some values of ZT
(right; the lines correspond to those on the left graph)

Figure 7 Optimal trading rate over the trading window t ∈ [0, 17.5] for Zt ≡ –499.4 MWh and
Yt ≡ 59.25e/MWh (left) as well as Yt ≡ 13.98e/MWh (right)

500 MWh by hard coal) and no final market order is required. If the final mid price ex-
ceeds 35e/MWh, the agent sells as much electricity as possible (145 MWh) and produces
exactly that amount with the CCGT plant at 35e/MWh, which is possible because its ca-
pacity is 100-400 MW. Finally, no matter how high the final mid price is, the OCGT unit
with the highest marginal cost is not used, since there is not enough sell volume on the
market. These results are clearly reasonable.

4.2 Trading rate
Figure 7 shows the optimal trading rate over the trading window t ∈ [0 h, 17.5 h]. In
both cases, we fix Zt ≡ –499.4 MWh (the non-integer numbers arise from the discretiza-
tion w.r.t. y and z). For the mid price, we choose Yt ≡ 59.25e/MWh (left) and Yt ≡
13.98e/MWh (right). In the left plot, the trading rate is negative (selling), which is rea-
sonable since Zt ≡ –499.4 MWh means that the agent has only marketed the cheapest
power plant and Yt ≡ 59.25e/MWh means that the execution price is above the marginal
costs of the second cheapest power plant. Note, that the absolute value of the trading
rate substantially increases around 15 h, since half-spread and immediate price impact
are minimal there. In the right plot, the execution price is below the marginal costs of
the cheapest power plant, the agent buys electricity and reduces the production of the
marketed power plant.

5 Conclusion and outlook
We have introduced an extended model for the intraday market of renewable electric-
ity. As opposed to earlier research, our more sophisticated approach does not allow for a
closed solution formula for the desired optimal trading strategy as a function of time. We
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thus used a numerical scheme for approximately solving the arising Hamilton–Jacobi–
Bellman (HJB) equation. The parameters within the HJB equation are market data which
we showed to be available by an empirical analysis.

The availability of a numerical approximation scheme allows us now to extend our model
to all market participants, so that regulatory constraints can be determined e.g. for reach-
ing desired environmental goals. Moreover, we will use our scheme to further investigate
optimal strategies within economically particular relevant market scenarios.
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