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Abstract
This paper deals with active time-harmonic infrared thermography applied to the
detection of defects inside thin plates. We propose a method to post-process raw
thermograms based on the computation of topological derivatives which will
produce much sharper images (namely, where contrast is highly enhanced) than the
original thermograms. The reconstruction algorithm does not need information
about the number of defects, nor the size or position. A collection of numerical
experiments illustrates that the algorithm is highly robust against measurement
errors in the thermograms, giving a good approximation of the shape, position and
number of defects without the need of an iterative process.
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1 Introduction
Nowadays, structural health monitoring is of paramount interest in a wide range of fields.
Structures may be monitored to evaluate the damage suffered after an earthquake, where
information is needed almost in real time. Airplanes are periodically inspected looking for
critical defects due to fatigue, halting them for long times and the list goes on. This means
that faster, more reliable, and cheaper inspection methods are eagerly sought.

The standard methods used in the airspace industry are based on ultrasonic tests, which
are extremely accurate but time-consuming as the inspected area per unit of time is quite
small. In this paper we study the capabilities of the infrared thermography as an alternative
inspection method.

An infrared thermogram is an image of a surface where each pixel has been assigned
a temperature. This temperature is estimated by means of an infrared thermal camera,
which senses the amount of infrared radiation coming from every direction in view (see
[21] for further details). Thermography has been successfully used in many fields [43],
including not only aircraft structural health monitoring [12, 16, 60], but also building in-
sulation inspection [36], medical diagnosis [15, 33, 44], nano-composites monitoring [35],
drying problems [57], et cetera.
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Figure 1 Experiments setup. Both the camera and the lamp are situated at the same side of the inspected
plate

Motivated by some experiments [61, 62] that were carried out at the Spanish Aeronau-
tical Technology Center (CTA), we consider in this paper thin rectangular plates, where
the illuminated side coincides with the one where the temperature is measured, i.e., where
the thermogram is taken, as sketched on Fig. 1. This could represent part of the fuselage
of an airplane which can only be inspected from the outside.

Compared with the ultrasonic test, the main advantage of the infrared thermography
is that it can take measurements over a whole surface at the same time. On top of that
it is a contactless (or nearly contactless) method, which can be very important when the
unknown state of damage of the structure can be dangerous for the person that performs
the inspection [20, 62].

The main disadvantage is that being heat transfer a short range phenomenon, the
amount of information that can be extracted from the thermogram is less than with the
same amount of data in an ultrasonic case. Another problem is that the temperature on
the surface of the structure is more easily influenced by the surrounding temperature and
humidity, and consequently, it should be carefully used in controlled environments. This
paper is devoted to active thermography, which consists in heating the medium actively,
in contrast to passive thermography, where the medium is not excited. There will be a heat
source (in our case an infrared lamp generating time-harmonic excitations) controlled by
the person performing the inspection. This way the amount of user-controlled conditions
is increased compared with the passive infrared thermography.

The usage of time-harmonic thermal excitations, i.e. of thermal waves, goes back to A.J.
Ångström [3] who was the pioneer in the theoretical and experimental study of this kind
of waves. However, the main advances in their use are rather recent, as reported in [1, 40]
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and references therein. As indicated in [5], the use of thermal waves is preferable to other
thermal imaging methods, in particular, to steady-state infrared thermography.

From the thermal point of view, defects are manifested as sharp changes in the thermal
properties of the structure. These changes affect the way temperature is distributed on
the whole structure. From the measured temperature in one of the outer surfaces (i.e.,
from a thermogram) one tries to devise the presence of such internal defects. However,
simple inspection or simple noise-filtering methods are not enough in most of the cases to
identify the defects, and post-processing thermograms via very efficient tools is required.
This will be illustrated in the forthcoming Figs. 5 and 6.

From the mathematical point of view [32, 45], following J. Hadamard’s definition, a prob-
lem is said to be well-posed if satisfies the following three conditions: (i) there is at least
one solution (existence), (ii) there is at most one solution (uniqueness) and (iii) the solution
depends continuously on the data (stability). Otherwise, the problem is called ill-posed.
The problem of obtaining the expected temperature measurements on a surface of the
inspected medium, given the boundary conditions, initial conditions, and thermal coef-
ficients is called the direct problem. It is a well-posed problem in the Hadamard’s sense:
it has a unique solution that depends continuously on the data. In particular, small per-
turbations in the inputs (thermal coefficients, boundary conditions, etc.) give rise to small
perturbation in the outputs (temperature on the surfaces). Furthermore, the heat equation
acts as a smoothing operator, meaning that in general the size of the perturbation in the
output will be smaller than the perturbation in the inputs. The greater the time difference
between excitation and measurement or distance between the discontinuity of the thermal
properties and the measuring location, the smaller the perturbation in the outputs. This
means that the inverse problem, i.e. finding the thermal coefficients distribution (which
will give away the presence of defects) given the boundary and initial conditions, and the
temperature distribution on part of its sides is an ill-posed problem. Small differences in
the input (the temperature on part of its sides) can be the consequence of really different
thermal coefficient distributions, and in the extreme case, more than one solution can be
possible, that is, more than one distribution of thermal coefficients can give rise to the
same temperature distribution on one of the sides of the inspected medium.

On top of that, if we take into account that we do not know with infinite precision the
values of the thermal coefficients of the material, nor the rest of the conditions of the ex-
periment, and that the thermogram is not the temperature on the side of the structure but
an estimation which contains measurement errors, we can almost assure that the thermo-
gram will not be a solution of the mathematical problem that models the direct problem
for any given defect distribution. That is, there is in general no solution to the inverse
problem as it is formulated, because, in general we cannot find a set of defects for which
the solution to the direct problem on the measurement side exactly agrees with the given
thermogram.

Because of this, in this paper, the inverse problem will be reformulated in a weakened
form, as a minimization problem of a shape functional, where we will try to find the set
of defects that gives rise to a temperature distribution on the inspected side which mini-
mizes its L2 distance to the given thermogram. This kind of reformulation is not new in
the literature and there are many different methods to solve this minimization problem.
Most of these reconstruction methods are iterative, namely, they begin with an “a priori”
distribution of defects and proceed by deforming them step by step trying to minimize the



Pena and Rapún Journal of Mathematics in Industry            (2020) 10:4 Page 4 of 25

aforementioned distance. Early methods were based on classical shape deformations, us-
ing perturbations of the identity operator, as the ones proposed in [27, 34, 55], and more
sophisticated ones deal with the computation of the so-called shape derivative [13, 59],
which provides the direction of deformation that minimizes this distance the most. How-
ever, the main drawback of these methods is that they need to start with an initial guess
having the true number of defects, which in practise is also an unknown for the inverse
problem. This difficulty was solved by using a new type of deformations that allow for
topological changes: the level-set methods [39, 49, 58]. In any case, these methods, being
iterative, are generally very time-consuming and require a rather large number of itera-
tions unless a good initial guess of the defects is used.

In our paper we study a fairly recent reconstruction method based on the computation of
the topological derivative of the shape functional [18, 47, 59]. The topological derivative at
a given point is the sensitivity of the shape functional to introducing an infinitesimal defect
at that point of the domain. It is a scalar function that can be interpreted (as we will do) as
an indicator function, that classifies each of these points as belonging to a defect or to the
surrounding medium. The main advantages of this method are: (i) it is a one-step method,
(ii) it does not require any a priori information about the number, size, shape or location of
the defects, (iii) it has a very small computational cost. Topological derivatives have been
successfully used for solving a wide variety of problems related with defect identification
in many fields, like in acoustics [6, 9, 19], electromagnetism [37, 42], elasticity [4, 25, 41],
and electrical impedance tomography problems [2, 8, 11], to mention a few. Related work
dealing with thermal problems was published in [7, 10], where a two dimensional unsteady
thermal propagation problem in an unbounded media was studied. In this paper we deal
with the identification of defects inside thin three dimensional plates by post-processing
time-harmonic thermograms via the topological derivative method. The simplification to
the steady-state case was very recently considered in [52, 53] for two-dimensional plates
and in [28] for three-dimensional ones. The two-dimensional time-harmonic case was
already studied in [53]. The current paper extends our short paper published in the Pro-
ceedings of the 20th European Conference on Mathematics and Industry [54]. The study
of the general unsteady problem (with no time-harmonic dependence) will be the subject
for our future work.

Throughout a gallery of numerical experiments, it will be illustrated that reconstruc-
tions highly depend on both, the frequency of excitation and on the location of the lamp.
Defects that are located close to the lamp are easier to identify, almost independently of
their size. The frequency of excitement makes more or less visible the presence of defects
depending on their size. To overcome these difficulties, we propose to simultaneously
post-process several thermograms corresponding to different frequencies and different
locations of the lamp by considering a weighted sum of the individual L2 distances, in the
spirit of the previous work [19] where measurements at different frequencies in an acous-
tic problem were processed. We will see that this promotes a clear improvement on the
reconstructions.

In comparison with simple steady excitations (considered in [28]), time-harmonic exci-
tations have two main advantages. First, when considering steady excitations, only vari-
ations in the thermal conductivity are relevant, while changes in the density or in the
specific heat capacity do not play a role. In case of time-harmonic excitations, the three
thermal properties are taken into account. Secondly, the usage of different frequencies
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improves the identification of small defects, that are in general not detected by steady
thermograms when in the configuration some defects bigger in size are also present.

For the numerical experiments presented in this paper, only syntectic data (namely,
numerically generated) will be considered. Processing experimental data is left as future
work.

The remaining of the paper is structured as follows. First we mathematically formulate
in detail the direct and inverse problems. Next we introduce the concept of topological
derivative, which is central to our inversion method, and present then an efficient way (a
closed form formula) to implement it by solving two related heat conduction problems
that take place in a healthy plate, i.e., in a plate without defects. The reconstructed defects
will be defined by clustering all the points where the topological derivative attains the
more pronounced negative values. As a way to assess the method we present numerical
results obtained on a representative configuration. Finally, we extract some conclusions
and propose possible improvements to the method.

2 Mathematical formulation of the direct and inverse problems
In this section we mathematically describe both, the heat conduction process in a thin
plate that models the thermographic inspection basis, and the problem to be solved,
namely, the identification of damage inside the plate from measurements of the tempera-
ture distribution at one side of such plate.

For simplicity, we assume the thin plate is rectangular and occupies the region

R = (–�x/2,�x/2) × (–�y/2,�y/2) × (–�z/2,�z/2), with �x � �y,�y ∼ �z.

The assumption �x � �y, �y ∼ �z is motivated by some laboratory experiments performed
at the Aeronautical Technology Center (CTA) at Miñano, Spain (see the description of the
experiments in [61, 62]).

We will denote by Γfront the side of R where the thermogram is taken and the radiation
from the lamp is received (see Fig. 1), described by the set Γfront = {x = –�x/2} ∩ R . The
opposite side will be denoted as Γback, namely, Γback = {x = �x/2} ∩ R , and the remaining
of the sides will be denoted collectively by Γsides = ∂R \ (Γfront ∪ Γback). Notice that Γsides

stands for the sides of the plate with the smallest areas (see Fig. 2). The internal defects
conform the subset D ⊂ R which is not necessarily connected (it can consist of more than
one disjoint defect).

In this paper, we study homogeneous metallic plates where the presence of defects is
defined by a sharp change in the value of the thermal properties. The extension to hetero-
geneous plates only requires small adjustments in the results. The thermal conductivity κ ,
density ρ , and specific heat capacity c will therefore be described by constant values inside
the defects (denoted by the subindex “i”, to recall that are interior parameters) and differ-
ent constant ones in the remaining of the plate (denoted by the subindex “e”, meaning
exterior), that is:

κ(x) =

⎧
⎨

⎩

κe, x ∈ R \ D ,

κi, x ∈ D ,
ρ(x) =

⎧
⎨

⎩

ρe, x ∈ R \ D ,

ρi, x ∈ D ,

c(x) =

⎧
⎨

⎩

ce, x ∈ R \ D ,

ci, x ∈ D .
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Figure 2 Domain. Mathematical description of the domain

The temperature distribution T(x, t) inside the plate satisfies then the homogeneous
linear heat equation

ρ(x)c(x)∂tT(x, t) + ∇ · (–κ(x)∇T(x, t)
)

= 0, x ∈ R \ ∂D , t > 0.

On the boundary of the defects ∂D we impose continuity of temperature and normal
thermal fluxes. By using the superscripts “i” and “e” to refer respectively to limit values
from the interior and the exterior of the defects, and denoting by n the exterior unit vector
perpendicular to the boundary, this is modelled by the boundary conditions

⎧
⎨

⎩

Te(x, t) – T i(x, t) = 0, x ∈ ∂D , t > 0,

κe∂nTe(x, t) – κi∂nT i(x, t) = 0, x ∈ ∂D , t > 0.

These conditions model conduction as the heat transfer method acting inside the defects
D , while convection and radiation effects are neglected due to the expected small dimen-
sions of the defects (consisting of air) in comparison with the size of the plate.

On the sides of the plate, there will be heat transfer by convection and radiation between
the surface of the plate and the surrounding air at temperature Tair. On the one hand, con-
vection will be modelled by Newton’s law of cooling, being the heat transferred per unit
area equal to h(T(x, t) – Tair), where h > 0 is a constant. On the other hand, the radiation
term would have two terms, the emitted heat εσT4(x, t), and the absorbed heat ασT4

air,
where σ > 0 is the Stefan–Boltzmann constant and ε > 0 and α > 0 are the hemispherical
emissivity and absorptance of the surface, which for simplicity are assumed to be constant
[30]. Due to the small thickness of the plate and the small difference between the temper-
ature on the surfaces of the plate we can perform some simplifications in the model. First,
we consider thermal insulation in the smallest sides Γsides, which is modelled by imposing
a zero normal flux (a homogeneous Neumann boundary condition):

–κe∂nT(x, t) = 0, x ∈ Γsides, t > 0.
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In the biggest sides, Γfront and Γback, we simplify the emitting term by linearising it around
Tair, resulting in a term of the form

4εσT3
airT(x, t) – (3ε + α)σT4

air, x ∈ Γfront ∪ Γback, t > 0,

and taking into account both radiation and convection we have

(
4εσT3

air + h
)
T(x, t) –

(
(3ε + α)σT3

air + h
)
Tair, x ∈ Γfront ∪ Γback, t > 0,

which we will rewrite as

aT(x, t) – b,

where a = 4εσT3
air + h and b = ((3ε + α)σT3

air + h)Tair are two positive constants. In addi-
tion, on Γfront we have a term accounting for the radiation coming from the lamp. This will
be modeled as an isotropic radiator situated at a point s (with first component sx < –�x/2),
and with intensity I(t). If θinc(x) is the incidence angle for a point x ∈ Γfront with respect to
the source s, then we have that the incoming heat can be described by the function

qs(x, t) =
I(t)
4π

cos(θinc(x))
|x – s|2 , x ∈ Γfront, t > 0. (1)

With all of this in mind the full non-stationary model would be:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρece∂tT(x, t) – κe�T(x, t) = 0, x ∈ R \ D , t > 0,

ρici∂tT(x, t) – κi�T(x, t) = 0, x ∈ D , t > 0,

Te(x, t) = T i(x, t), x ∈ ∂D , t > 0,

–κe∂nTe(x, t) = –κi∂nT i(x, t), x ∈ ∂D , t > 0,

–κe∂nT(x, t) = 0, x ∈ Γsides, t > 0,

–κe∂nT(x, t) = aT(x, t) – b, x ∈ Γback, t > 0,

–κe∂nT(x, t) = aT(x, t) – b – αqs(x, t), x ∈ Γfront, t > 0,

T(x, 0) = T0(x), x ∈ R,

where T0(x) is the initial temperature distribution in the plate.
As already mentioned in the introduction, we are interested in the case where the in-

tensity of the lamp is a time-harmonic function. That would require an experiment where
the intensity of the lamp has an average value and oscillates around it, that is:

I(t) = Î + Re
(
Ie–iωt),

where I is a complex number carrying information about both amplitude and phase of
the oscillation, Î stands for the mean value and ω > 0 is the frequency of the oscillation.
The corresponding heat coming from the lamp can also be expressed as:

q(x, t) = q̂s(x) + Re
(
Qs(x)e–iωt),
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where the function Qs is defined as its counterpart time-dependent one (see (1)), namely,

Qs(x) =
I

4π

cos(θinc(x))
|x – s|2 .

Due to the linearity of the problem, the temperature can then be decomposed in the sum
of three terms,

T(x, t) = T̃(x, t) + T̂(x) + Re
(
T (x)e–iωt),

where T̃ is a transient term that accommodates the initial condition and vanishes in a
short time, T̂ is a time-steady temperature distribution and T : R → C is the term cor-
responding to the complex amplitude of oscillation of the temperature at every point. In
this paper, we focus on the effects of the latter term T . Taking into account that the initial
conditions are fulfilled by the transient term T̃ , and that the steady terms are absorbed by
T̂ , the time-harmonic one T solves the following (stationary) problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κe�T (x) + iωρeceT (x) = 0, x ∈ R \ D ,

κi�T (x) + iωρiciT (x) = 0, x ∈ D ,

T e(x) – T i(x) = 0, x ∈ ∂D ,

κe∂nT e(x) – κi∂nT i(x) = 0, x ∈ ∂D ,

κe∂nT (x) = 0, x ∈ Γsides,

κe∂nT (x) + aT (x) = 0, x ∈ Γback,

κe∂nT (x) + aT (x) = αQs(x), x ∈ Γfront,

(2)

where no dependence in time is present.
The direct problem, which models the generation of a thermogram is then the follow-

ing: knowing the dimensions of the plate R , the damaged region D , the involved physical
parameters (κe, κi, ρe, ρi, ce, ci, ε, α, σ , h), the surrounding air temperature Tair, and the
location s, frequency ω and intensity I of the lamp, find the complex thermal amplitude
of the temperature T front

s,ω (x) for x ∈ Γfront which is the solution T of problem (2) on the
boundary Γfront. It is important to remark here that infrared cameras rather than the tem-
perature (or the complex thermal amplitude of the temperature) they measure thermal
radiation, and from it, they calculate the temperature distribution. In this paper, we as-
sume that the thermal radiation obtained by the camera has already been processed and
therefore the thermogram contains directly the values of the amplitude of the tempera-
ture oscillations T front

s,ω . The associated inverse problem is then the following: knowing the
thermogram T front

s,ω , the dimensions of the plate R , the involved physical parameters (κe,
κi, ρe, ρi, ce, ci, ε, α, σ , h), the surrounding air temperature Tair, and the location s, fre-
quency ω and intensity I of the lamp, find the damaged region D such that the solution
T of problem (2) for that region D agrees on Γfront with the thermogram T front

s,ω , i.e., such
that

T (x) = T front
s,ω (x), x ∈ Γfront. (3)
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3 Inversion method
This section is devoted to the solution of the inverse thermal problem by means of a topo-
logical derivative-based algorithm. The starting point is to rewrite our inverse problem
in a less demanding way as follows. For a given temperature distribution T front

s,ω (that is, a
thermogram), instead of imposing the identity (3) to find the damaged region D , we con-
sider a weaker formulation, where the aim is to find the set of defects D that minimize the
quadratic error cost function

Js,ω(R \ D) =
1
2

∫

Γfront

∣
∣T D

s,ω(x) – T front
s,ω (x)

∣
∣2 dγx, (4)

where T D
s,ω is the solution of (2) when the defects are occupying the region D , and dγx

stands for surface integration. Notice that in this formulation the defects D are the variable
of the cost function, while the time-harmonic heat conduction problem plays the role of
a constraint.

The reconstruction algorithm to be applied consists now of computing the so-called
topological derivative or topological gradient of the cost function Js,ω , which is the scalar
function Ds,ω defined at each point x ∈ R by the asymptotic expansion [47, 59]

Js,ω
(
R \ Bε(x)

)
= Js,ω(R) + f (ε)Ds,ω(x) + o

(
f (ε)

)
, as ε → 0, (5)

where Bε(x) is the ball of radius ε and center x, and f (ε) is a positive increasing function
selected to guarantee that the expansion (5) holds. In our case, adapting the results in
[6, 24] we find that it can be taken as the volume of the ball, namely f (ε) = 4πε3/3.

In view of the asymptotic expansion (5), the topological derivative is a measure of the
sensitivity of the cost function to considering an infinitesimal ball-like defect at each point
x of the plate. Consequently, we can interpret it as a damage indicator function since the
cost function is expected to decrease at the points where this derivative attains large nega-
tive values. Then, our reconstruction strategy just consists of identifying the points where
the topological derivative attains pronounced negative values as belonging to a defect.
That is, we approximate the true set of defects D by the set of points

Dapprox =
{

x ∈ R; Ds,ω(x) < λmin
y∈R

Ds,ω(y)
}

, (6)

where 0 < λ < 1 is a parameter that can be calibrated.
It is clear now that the asymptotic expansion (5) motivates our reconstruction strategy.

However, from the numerical point of view it does not give a practical way to compute
the topological derivative. Using the strategy proposed in [46] one can obtain closed-form
formulae for the topological derivative of cost functionals of the form (4). In particular,
this was used by one of us to obtain in [6] a closed-form formula for a time-harmonic
problem in two dimensions analogous to the one in the present paper, and in [37, 38]
for analogous time-harmonic electromagnetic problems in three dimensions. Performing
suitable adjustments in the derivations in [6, 37, 38] to deal with the boundary conditions
in the direct problem (2) it can be proven the following result.
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Theorem For the cost function Js,ω defined in (4), the topological derivative at each point
x ∈ R is given by the formula

Ds,ω(x) = Re

(
3κe(κe – κi)

2κe + κi
∇T 0

s,ω(x) · ∇V0
s,ω(x)

– iω(ρece – ρici)T 0
s,ω(x) · V0

s,ω(x)
)

, (7)

where T 0
s,ω is the solution to the direct problem corresponding to a healthy plate:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

κe�T 0
s,ω(x) + iωρeceT 0

s,ω(x) = 0, x ∈ R,

κe∂nT 0
s,ω(x) = 0, x ∈ Γsides,

κe∂nT 0
s,ω(x) + aT 0

s,ω(x) = 0, x ∈ Γback,

κe∂nT 0
s,ω(x) + aT 0

s,ω(x) = αQs(x), x ∈ Γfront,

(8)

and V0
s,ω is the solution to a related adjoint problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

κe�V0
s,ω(x) – iωρeceV0

s,ω(x) = 0, x ∈ R,

κe∂nV0
s,ω(x) = 0, x ∈ Γsides,

κe∂nV0
s,ω(x) + aV0

s,ω(x) = 0, x ∈ Γback,

κe∂nV0
s,ω(x) + aV0

s,ω(x) = T front
s,ω – T 0

s,ω, x ∈ Γfront.

(9)

The previous theorem provides a very simple formula to implement the reconstruction
method, we just need to solve problems (8) and (9), being (8) the first one to be solved since
the source term at the last equation in the adjoint problem depends on the solution to (8),
and compute then the gradients of such solutions to implement the formula (7). Then,
the approximate domain is obtained easily by identifying the points where the topologi-
cal derivative attains the largest negative values, as explained in formula (6). Notice also
that both problems (8) and (9) take place in the healthy plate R and consequently, no a
priori information about the number, size or shape of the searched defects is needed. The
information about the defects (the measured thermogram T front

s,ω ) is incorporated in the
topological derivative by means of the right hand side in the last equation in the adjoint
problem (9).

In practice, and as we will illustrate in the forthcoming section devoted to the numeri-
cal experiments, processing just one thermogram corresponding to one lamp position and
one frequency could be inadequate to properly identify the damaged region. To overcome
this problem, one can either consider different lamp locations and process all the associ-
ated thermograms, or consider different thermograms obtained at different frequencies,
or combine both strategies. Then, when having a set of thermograms T front

si ,ωj
corresponding

to locating the lamp at Nlamps different points si, i = 1, . . . , Nlamps (Nlamps = 1 in case just one
position is considered), and use Nfreq different oscillation frequencies ωj, for j = 1, . . . , Nfreq

(Nfreq = 1 if just one frequency is used), one can consider a new cost functional, corre-
sponding to a linear combination of each individual cost functional (4), namely,

J(R \ D) =
Nlamps∑

i=1

Nfreq∑

j=1

pijJsi ,ωj (R \ D), (10)
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where pij > 0 are weights to be selected. Then, by linearity (see the definition (5)), we find
that for each x ∈ R the topological derivative of the functional (10) is

D(x) =
Nlamps∑

i=1

Nfreq∑

j=1

pijDsi ,ωj (x), x ∈ R. (11)

Then, the true domain can be approximated by the set

Dapprox =
{

x ∈ R; D(x) < λmin
y∈R

D(y)
}

, (12)

where, as in (6), the parameter 0 < λ < 1 has to be selected.
The simplest choice for the weights in (10) is pij = 1 for all i, j. However, by doing this

the contribution of some lamps and/or frequencies could be disregarded while the contri-
bution of some other ones could be too stressed (recall that we are interested in the points
where the topological derivative attains the largest negative values). To somehow make
uniformly important all the contributions, we propose, as already done in [19, 38, 50] for
some related multifrequency data, to use the weights

pij =
∣
∣
∣min

y∈R
Dsi ,ωj (y)

∣
∣
∣
–1

(13)

for which it follows that the contribution of each term in (11) satisfies

min
y∈R

(
pijDsi ,ωj (y)

)
= –1.

Selecting the weights pij as in (13) for the definition (12) of the approximate domains
Dapprox provides good approximations of the true defects, as illustrated in the next sec-
tion. Nevertheless, some other choices of pij are possible and could improve the results.
For related selections of weights, either a priori or a posteriori (as done in this paper) can
be found in [23, 29, 31, 51, 56].

4 Numerical results
In this section we present some numerical results to illustrate the performance of the
method.

Both the computation of the topological derivative, i.e., the solution of the state (8) and
adjoint (9) problems; as well as the generation of synthetic thermograms via solving the
forward problem (2) was done by means of the finite element solver Freefem++ which
allows for variational formulation of generic problems and solving them with different
types of elements [26]. In our case P2 elements (piecewise polynomials of degree two)
defined on a tetrahedral mesh were used.

For all our experiments we consider a plate of dimensions �x = 0.01 m, �y = 0.50 m and
�z = 1.00 m containing three different defects:

• A box-shaped defect of height 6�x
4 = 15 × 10–3 m, width 3�x

4 = 7.5 × 10–3 m and
thickness �x

2 = 5 × 10–3 m with centroid at
(– �x

6 , – �y
4 , �z

4 ) = (–1.67 × 10–3, 0.125, 0.25) m.
• A spherical defect of radius �x

3 = 3.33 × 10–3 m and center at (0, �y
4 , 0) = (0, 0.125, 0) m.
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Figure 3 Faulty plate. Plate and three zoomed regions that contain the defects

• A groove-shaped defect of height 30�x
4 = 75 × 10–3 m, width �x

4 = 2.5 × 10–3 m and
thickness �x

2 = 5 × 10–3 m, with centroid at
(– �x

6 , – �y
4 , – �z

4 ) = (–1.67 × 10–3, 0.125, –0.25) m.
The faulty plate is represented in Fig. 3.

The faulty plate was meshed in gmsh [22] using tetrahedrons obtaining 70,287 nodes and
405,089 elements. For solving the state and adjoint problems, the associated healthy plate
(i.e, the plate without defects) was meshed obtaining 85,261 nodes and 438,944 elements.
As can be seen in Fig. 4 these meshes not only differ in the number of nodes and elements,
but also in the structure: the mesh for the faulty plate concentrates more elements near
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Figure 4 Meshes. Left: mesh corresponding to the faulty plate. Right: mesh corresponding to the healthy
plate. Both meshes have approximately the same number of nodes, however for the faulty plate, these are
concentrated near the three defects

the defects, while in the mesh for the healthy plate the size of all the elements is uniform.
Furthermore, this second mesh is finer in order to be able to capture objects of small size.

The exterior thermal coefficients in the model were chosen as κe = 200 W/(m · K), ρe =
2700 kg/m3 and ce = 900 J/(kg · K) which correspond to an aluminium alloy, while the
defects are supposed to be air cavities with associated interior thermal coefficients κi =
0.025 W/(m · K), ρi = 1 kg/m3 and ci = 1000 J/(kg · K).

For the boundary conditions, the air is assumed to be at room temperature Tair = 290 K
and h = 15 W/(m2 · K) which accounts for the possible natural convection. The hemi-
spherical emissivity and absorptance of the aluminium surface at the expected tempera-
tures are ε = 0.08 and α = 0.4 respectively. Finally I = 6000 W, that is, the intensity of the
lamp oscillates with amplitude equal to 6000 watts and zero phase.

With this configuration and the lamp situated 0.15 m apart from the surface of the plate,
we get maximum temperature variations of |T | ≈ 0.5 K for the lower frequencies (0.8 Hz)
to |T | ≈ 0.25 K for the higher ones (2 Hz).

Inverse crimes may occur when the same model is used to generate and process synthetic
data [14, 45]. We avoid them both by solving the forward and inverse problems in different
meshes (i.e., by considering different meshes to generate the synthetic data in the faulty
plate, and to compute the topological derivative which requires solving two problems in
the healthy plate), as well as by adding some random noise to simulate measurement errors
of the form:

N(x) = η max
(|T |)(U(0,1)(x) – 0.5 +

(
U(0,1)(x) – 0.5

)
i
)
, for each node x, (14)

where U(0,1) stands for the uniform distribution between 0 and 1 and the dependency on x
means that for each node of the mesh two realizations of the distribution are made, one for
the real part and one for the imaginary one. The uniform distribution was generated using
the randreal1 function from FreeFem++ [26]. That way, if T is the simulated temperature
obtained by solving (2) for the true defects D , the corresponding noisy thermogram will
be

T front(x) = T (x) + N(x), x ∈ Γfront.
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Table 1 Comparative between the amount of information and added noise. For six linearly-spaced
frequencies between 0.8 and 2 Hz we present in the first row the maximum amplitude of a
thermogram, on the second row the maximum amplitude of the difference between the
thermogram of a faulty plate and the one corresponding to a healthy one, that is the amount of
useful information, and on the last row the quotient between the added noise and that amount of
information. For the considered frequency range, this ratio decreases as we increase the frequency

Frequency [Hz] 0.80 1.04 1.28 1.52 1.76 2.00
max(|T front|) [K] 0.521 0.418 0.356 0.316 0.288 0.268
max(|T front

faulty – T
front

healthy|) [K] 0.058 0.050 0.045 0.044 0.041 0.038
ratio noise to information 90% 83% 79% 72% 70% 70%

Figure 5 Thermograms with ω = 0.8 Hz. Left: amplitude of the temperature |T front|. Right: difference
between thermograms corresponding to a healthy plate and a faulty one. At low frequencies defect
detection is impossible at plain sight

The constant η in (14) allows us to control the level of measurement noise, namely, the
maximum magnitude of the difference |T front – T |. For example, setting η = 0.1 means
having a level of noise of 0.05 degrees for the lowest frequencies and 0.025 for the higher
ones, which agrees with the precision of a high-end infrared camera (0.02 degrees [33]).
If we compare the ratio noise to information, namely, the quotient between the noise we
are adding and the useful information we have (where the useful information is defined
as the difference between the thermogram of a faulty plate and the one we would get on a
healthy one), we find that for η = 0.1 the noise is comparable to the 70% of the information
for the higher frequencies and up to the 90% for the lower ones. See Table 1 for a more in
depth explanation.

In Figs. 5 and 6 we show the thermogram obtained when a lamp is situated at s =
(–0.15, 0, 0) m and its intensity oscillates at frequencies of 0.8 and 2 Hz respectively. We
can see that with that amount of noise is virtually impossible to use the raw thermograms
as an indicator of the position, size or shape of the defects.

The values of the topological derivative obtained when processing the thermogram for
ω = 0.8 Hz (shown in the left plot in Fig. 5) on the planes x = –�x/2 (namely, on Γfront),
x = –�x/4, x = 0, and x = �x/4 are shown in Fig. 7. We observe that the largest negative
values (blue colors) are not concentrated inside any of the three defects. Indeed, we only
find that it presents both local maxima (red colors) and minima (blue colors) in the points
closer to the lamp which hide the actual defects. Notice that since our thermogram is
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Figure 6 Thermograms with ω = 2 Hz. Left: amplitude of the temperature |T front|. Right: difference between
thermograms corresponding to a healthy plate and a faulty one. At high frequencies the box defect, which is
the shallower one, is barely visible

Figure 7 Values of the topological derivative on several planes of the form x = x0. First: x = –�x/2. Second:
x = –�x/4. Third: x = 0. Forth: x = �x/4

highly polluted by noise, the topological derivative on Γfront is non-smooth, having sharp
changes from one node to its neighbours. However, the diffusivity of the heat equation
makes the topological derivative to be much smoother as we move away from Γfront to
Γback. We also observe that the topological derivative is qualitatively rather similar at all
the planes, attaining the most pronounced negative values on Γfront. For this reason and
for the sake of brevity, in the forthcoming figures we will only represent the values of the
topological derivative on Γfront, unless otherwise stated.

When processing the thermogram for ω = 2 Hz shown in the left plot in Fig. 6, we find
completely analogous results, as can be seen in the right plot in Fig. 8 where the topological
derivative on Γfront is shown. Its counterpart for ω = 0.8 Hz is also represented in the left
plot for ease of comparison.

If we use formula (11) to combine both frequencies we get the topological derivative
shown in Fig. 9 suggesting that combining frequencies may be a good way to minimize the
effect of the noisy thermograms. On the zoom we can see that the topological derivative
does have a local minima where the defect is, however this is not visible compared with
the spurious ones.
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Figure 8 Topological derivatives on Γfront for a single experiment. Left: topological derivative corresponding
to ω = 0.8 Hz. Right: topological derivative corresponding to ω = 2 Hz. Any possible detection of the defects
is due to cognitive bias

Figure 9 Topological derivative on Γfront for two combined frequencies. Left: topological derivative
combining single-frequency data at 0.8 and 2 Hz. Right: zoom of the previous image around the box-shaped
defect with the colormap rescaled to the visible range. The outline of the defect is also shown in black on the
image on the right

This is confirmed by combining 10 linearly spaced frequencies between 0.8 and 2 Hz as
shown in Fig. 10. In this figure, one can clearly see traces of the three defects. Furthermore,
the global minimum of the topological derivative now corresponds to a true defect, the
spherical one.

The main drawback of this method is that, being performed all the experiments with a
lamp located in the same position, some of the defects may be situated in a more favourable
region for detection than others. This is suggested by the fact that in the last example
the global minimum points out the region where the spherical defect is located although
this defect is the smallest and deepest one. To corroborate this, in Fig. 11 we show the
results obtained for two single-frequency experiments at ω = 2 Hz with lamps situated a
two different locations s = (–0.15, 0, 0.25) m and s = (–0.15, 0, –0.25) m. We can see that
by placing the lamp near any of the defects we highlight that defect at the expense of
loosing most of the information about the other ones. This is probably caused because
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Figure 10 Topological derivative on Γfront for ten combined frequencies. Left: topological derivative
combining ten linearly-spaced frequencies between 0.8 and 2 Hz. Right: zoom of the previous image around
the groove-shaped defect with the colormap rescaled to the visible range. The outline of the defect is also
shown in black on the image on the right

Figure 11 Topological derivative on Γfront for two different lamp locations. Left: lamp near the box-shaped
defect. Right: lamp near the groove-shaped defect. As one can see, reconstructions highly depend on the
position of the lamp

the gradients of the thermogram are attained near the lamp and the farther we get from
it the flatter the temperature distribution is, meaning that the effect of having a defect is
smaller.

To overcome this problem, different locations of the lamp may be combined as a way
to diminish the influence of the location of the defects in its detection. In Fig. 12 on the
left we show the results for the combination of three different locations for the lamp at a
frequency of 2 Hz. The lamps are linearly spaced over the z axis, that is, they are situated
at s1 = (–0.15, 0, –0.25) m, s2 = (–0.15, 0, 0) m and s3 = (–0.15, 0, 0.25) m.

We should not overestimate this result as we should recall that the frequency of 2 Hz
is specially well suited for this experiment. If we had chosen ω = 0.2 Hz, the result would
have been much worse as shown in Fig. 12 on the right. Results for the suitable frequency
were shown first to better illustrate the difference between different lamp locations. The
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Figure 12 Topological derivative on Γfront combining three different lamp locations. Left: lamps linearly
spaced along the z axis at a frequency of 2 Hz. Right: counterpart at 0.2 Hz. Combining different lamp
locations is a great way to improve the reconstruction of several defects at the same time, but we still have to
choose the adequate frequency

Figure 13 Topological derivative on Γfront combining several frequencies and lamp locations. Left:
topological derivative corresponding to six linearly spaced frequencies between 0.2 and 2 Hz and a 2-by-2
grid of lamps. Right: counterpart when a 3-by-3 grid of lamps is used. The appearance of spurious minima is
highly reduced in both cases due to the multifrequency character, and increasing the number of lamps highly
improves the reconstructions

suitability of a particular frequency depends on the size of the defect, which is, in principle,
an unknown. This motivates the combination of several frequencies.

By combining thermograms coming from different frequencies and locations of the
lamp, the corresponding topological derivative provides with great precision the shape,
number and position of the three defects without having to search for the most adequate
lamp positions and/or frequencies. In Fig. 13 we show the topological derivative corre-
sponding to six linearly spaced frequencies between 0.2 and 2 Hz and situated on a lin-
early spaced grid on the xz-plane. We can see that combining multiple frequencies helps
to smooth the background and to be able to recover the defects without a priori informa-
tion about their sizes, whereas combining different lamp locations makes all the defects
to stand out without a priori information about their location. We could see that with a
2-by-2 grid of lamps, as shown on the left, the grid is not fine enough to capture all three
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Figure 14 Topological derivatives shown in Figure 13 plotted as surfaces. Left: topological derivative
corresponding to six linearly spaced frequencies between 0.2 and 2 Hz and a 2-by-2 grid of lamps. Right:
counterpart when a 3-by-3 grid of lamps is used. True defects appear as coherent mountain-like structures
opposite to the random peaks of the spurious minima

Figure 15 Values of the topological derivative on several planes of the form x = x0. First: x = –�x/2. Second:
x = –�x/4. Third: x = 0. Forth: x = �x/4

defects because the spherical one happens to be worse situated than the rest. This is solved
by using a finer grid, i.e., by increasing the number of lamp positions.

One may argue that there is no clear distinction between the spurious minima and the
minima corresponding to true defects, however this is just a consequence of showing the
value of the topological derivatives as colormaps. If we instead plot the values of the topo-
logical derivative on the surface Γfront as the three-dimensional surface x = D(– �x

2 , y, z) we
can clearly see that the true defects correspond to local minima which are much more pro-
nounced than its surroundings. This is shown in Fig. 14 where there is no doubt that the
first one (which corresponds to Fig. 13-left) is detecting two defects whereas the second
one (corresponding to Fig. 13-right) is detecting the presence of the three true defects.

Due to the short-range character of the heat transfer equation, the topological derivative
appears to always have its local minima on the inspecting boundary (Γfront), as can be
observed in Fig. 15, where we show the values of the topological derivative at different
planes of the form x = x0 for our last example (corresponding to 9 lamp positions and 6
frequencies). Therefore, in view of this, we cannot aim to recover the correct depth of
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Figure 16 Reconstruction of the box-shaped defect. Upper left: Topological derivative at x = 0. Upper right:
Topological derivative at y = –0.125. Lower left: Topological derivative at z = 0.25. Lower right: Perspective
showing the reconstruction for λ = 0.4 and the original defect

the defects by using formula (12). Nevertheless, reconstructions will be accurate in the
y and z directions and rather insensitive to the selected value of λ in (12). To visualize
this, we consider first the value λ = 0.4 and find the reconstructed defect Dapprox by using
formula (12). Figures 16, 17, and 18 show the reconstructions for the box-shaped, groove-
shaped and the spherical defects, respectively. The three figures share a common scale
and colormap to highlight that the global minimum is attained at the box defect and that
the least pronounced minimum corresponds to the sphere. On each figure, we show the
values of the topological derivative along three perpendicular planes that intersect each
defect (x = 0, y = –0.125, and z = 0.25 for the box, z = –0.25 for the groove and z = 0 for the
sphere), as well as one view in perspective of the true defect in black, and the reconstructed
domain Dapprox, in green. On the planes the outline of the sections of the true (black line)
and the reconstructed defects (magenta line) are superimposed. We can see that in the
three cases the reconstructions begin in the surface Γfront of the plate as expected. Indeed,
for the groove-shaped and the spherical defects, reconstructions do not cut the x = 0 plane
(we do not see any magenta line on the corresponding images).

However, in terms of yz location, shape and size are very accurately found, even in spite
that we are using thermograms with a level of noise going from the 70% to 90% of the
useful information. Furthermore, while the three defects are well recovered, spurious de-
fects do not appear, that is, Dapprox only consists in the three green defects that are shown
in Figs. 16, 17, and 18.

By selecting the constant λ = 0.3 in formula (12), we obtain a rather similar recon-
struction, as can be seen in Fig. 19. This means that the method is not very sensitive
to the calibration of λ (although undudobtely, a drastical increase/decrease of it would
yield to reconstructions understimating/overstimating sizes, and loosing/including some
small/spurious defects).
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Figure 17 Reconstruction of the groove-shaped defect. Upper left: Topological derivative at x = 0. Upper
right: Topological derivative at y = –0.125. Lower left: Topological derivative at z = –0.25. Lower right:
Perspective showing the reconstruction for λ = 0.4 and the original defect

Figure 18 Reconstruction of the spherical defect. Upper left: Topological derivative at x = 0. Upper right:
Topological derivative at y = –0.125. Lower left: Topological derivative at z = 0. Lower right: Perspective
showing the reconstruction for λ = 0.4 and the original defect

5 Conclusions and future work
We have shown that time-harmonic infrared thermography is a promising method for
contact-less defect detection when thermograms are suitably post-processed. Our pro-
posed method based on the computation of the topological derivative enables to eas-
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Figure 19 Reconstruction of the three defects for λ = 0.3 Left: perspective of the box-shaped defect. Center:
perspective of the groove-shaped defect. Right: perspective of the spherical defect. The reconstructed
defects do not depend highly on the choice of the value for λ

ily combine thermograms obtained at different frequencies and locations, what we have
shown to be crucial if we do not have a priori information on the possible size or location
of the defects.

As reported by many authors for different non-destructive testing settings (see for in-
stance [24, 37, 41, 42]), one of the main advantages of using topological derivative based
methods instead of using the raw measured data is that topological derivatives can give
an estimation of the three dimensional position and shape of the defects, whereas the raw
data can only aspire to show the projection of the defects on the inspected two dimen-
sional surface. In our time-harmonic heating setting, however, the topological derivative
seems to give barely any information about this third dimension perpendicular to the in-
spected surface. This does not render the topological derivative useless as we have shown
that it is an excellent post-processing tool, highly improving the detection of the defects on
the inspected surface, providing their number, shape and localization without any need of
iterative processes. Furthermore we have tested the topological derivative against highly
polluted thermograms and it was able to perform correctly.

From a practical point of view, when inspecting a plate-like structure, the topological
derivative could be used to pinpoint the yz-location of possible defects and then decide to
either repair that area or use at that zone another inspection method as the ultrasonic test,
greatly reducing the inspection time, as this latter method would only need to analyse a
discrete set of locations (namely, a very small area in comparison with the whole excitation
side Γfront).

From an academic point of view the topological derivative could be used as an initial
guess generator for iterative methods like shape-derivative methods [13, 59], which need
to know the exact number of defects, or with level-set methods [39, 49, 58] which; despite
not needing a priori information on the number of defects, can converge to a solution
much faster if the initial guess is closer to the solution.

Another promising option is computing the second order topological derivative [17, 48]
in zones where the topological gradient has marked the presence of defects. The second
order topological derivative can capture more information about the effect of placing de-
fects of finite size, thus it may be able to discern the utility of placing defects on the surface
or in the interior of the plate.

On the other hand, despite the topological derivative having always its minima on the
surface, the region around the minima seems to behave differently for defects situated at
different depths. This may be difficult to describe in a systematic way, but maybe some
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machine learning algorithm could be trained to learn to extract the depth of the objects
by post-processing the topological derivatives.

Finally, in view of published work comparing time-harmonic and more general time-
dependent excitations for a thermal problem in an unbounded two-dimensional media
[7], we believe that by processing time-dependent thermograms via topological derivative
methods it could be possible to find the correct depth of the defects. The extension of the
method to the general time-dependent case is not immediate and we plan to do it in the
near future.
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