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Abstract
A new method to compute the target photometric variables of non-imaging optical
systems is presented. The method is based on the phase space representation of each
surface that forms the optical system. All surfaces can be modeled as detectors of the
incident light and emitters of the reflected light. Moreover, we assume that the
source can only emit light and the target can only receive light. Therefore, one phase
space is taken into account for the source and one for the target. For the other
surfaces both the source and target phase spaces are considered. The output
intensity is computed from the rays that leave the source and hit the target. We
implement the method for two-dimensional optical systems, and we compare the
new method with Monte Carlo (MC) ray tracing. This paper is a proof of principle.
Therefore, we present the results for systems formed by straight lines which are all
located in the same medium. Numerical results show that the intensity found with
the ray mapping method equals the exact intensity. Accuracy and speed advantages
of several orders are observed with the new method.

Keywords: Optical systems; Photometric variables; Monte Carlo ray tracing; Phase
space; Inverse ray mapping

1 Introduction
The goal in non-imaging optics is to compute the light distribution at the target of the
system. To this purpose, the Monte Carlo (MC) ray tracing procedure is often used, [4].
Rays are randomly traced from the source to the target and each time that a ray hits an
optical surface the coordinates of the intersection point with that surface and the new
direction are calculated. The output variables are computed dividing the target into inter-
vals, the so-called bins, and counting the rays that arrive at each bin. To obtain the desired
accuracy, millions of rays are required, therefore the method is extremely computationally
expensive and it converges as the inverse of the square root of the number of rays traced
(see [9]).

Recently we introduced a method to speed up MC ray tracing using the phase space (PS)
approach (see [2]). In this method we consider the PS of the source and the PS of the target
of the system. Given an optical surface in three dimensions, in PS every ray is described
by two position coordinates and two direction coordinates. The position coordinates are
given by two of the coordinates of the intersection point of the ray with the surface, while
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the direction coordinates are the momentum coordinates of the (tangent line to the) ray
projected on the optical surface (see [6, 7, 10]). The output intensity is computed through
an integration of the luminance. The target PS consists of regions where the luminance
is positive, outside these regions the luminance is equal to zero. Assuming the luminance
to be a positive constant whenever it is different from 0, only the PS coordinates of the
rays corresponding to the boundaries of the regions with positive luminance need to be
computed. Ray tracing on PS was tested for two-dimensional systems. Compared to MC
ray tracing, far less rays need to be traced to obtain the same accuracy and a convergence
proportional to the inverse of the number of rays traced is obtained (details are explained
in [2]).

In this paper a new method to compute the photometric variables at the target of a
non-imaging optical system is presented. We restrict ourselves to two-dimensional sys-
tems therefore, from now on, we refer to the optical surfaces as lines. We assume that the
systems are formed by reflective lines, therefore refraction is not taken into account. The
method employs not only the source and the target PS, as PS ray tracing does, but also the
PS of all the other lines that constitute the optical system. Furthermore, instead of starting
from the source, the new method starts tracing back rays from target PS.

Every line of the system (except for the source S and the target T) constitutes the target
for incident rays and the source for reflected rays. Therefore, two different phase spaces
are considered for the reflectors and one PS for S and T. All the PS considered are divided
into regions, the boundaries of which can be determined exactly for systems formed by
straight lines. We make the assumption of a Lambertian source; hence, the luminance is
a positive constant when different from 0. As a consequence, the output intensity along
a given direction is given by the total width of all the patches with positive luminance,
measured along that direction.

Compared to MC ray tracing, the new method takes advantage of the fact that only the
rays located exactly on the jump discontinuities of the luminance, from zero to a positive
value, are needed. In order to determine the coordinates of these rays, an inverse map from
the target to the source PS is constructed as a concatenation of several maps. Employing
this inverse map we are able to detect the rays that will hit the target and that are located on
the boundaries of regions with positive luminance in target PS. These rays are then traced
from S to T to compute their coordinates at the target. The ray mapping method has two
main advantages. First, the accuracy of the intensity is improved, in particular, for systems
formed by straight lines the intensity is found analytically. Second, even less rays than for
PS ray tracing are needed. Compared to PS and MC ray tracing the new method improves
both the accuracy and the computational time. The only disadvantage of the new method
compared to existing procedures is that it is more complicated to implement.

This paper is a proof of principle and investigates the method for two different optical
systems in 2D: the two-faceted cup and the multi-faceted cup. This work it is organized
as follows. In Sect. 2, the method is implemented for the two-faceted cup. The numerical
results of this system are presented in Sect. 3. Section 4 describes a generalization of the
method to the more complex multi-faceted cup, which is a system formed by many straight
lines as reflectors. The results for the 20-faceted cup are shown in Sect. 5. Conclusions are
given in the last section.
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2 Description of the phase space method for the two-faceted cup
In this section a description of the method is presented. First, it is explained for a simple
optical system: the two-faceted cup, where only the law of reflection plays a role. In the
following we describe the geometry of this system, then we introduce the notion of phase
space for all the lines that constitute the system. Finally, we explain how to calculate the
output intensity.

2.1 Rays propagation through the two-faceted cup
Given a Cartesian coordinate system (x, z), an optical system symmetric with respect to
the z-axis is defined. The simplest optical system we can image is the so-called two-faceted
cup, the profile of which is depicted in Fig. 1.

The light source S = [–a, a] (line 1) and the target T = [–b, b] (line 4) are two segments
normal to the z-axis, where a = 2 and b = 17. The left and right reflectors (line 2 and 3)
are oblique segments that connect the source and the target. All the optical lines i with i ∈
{1, . . . , 4} are located in air, therefore the refractive index ni = 1 for every i. The optical axis
coincides with z-axis. From now on, the coordinates (xi, zi)i=1,...,4 denote the intersection of
a ray with line i and, si = (– sin ti, cos ti) is the direction vector of the ray that leaves i, with
ti the angle that the ray forms with respect to the optical axis measured counterclockwise.
As we consider only forward rays, the angles ti ∈ (–π/2,π/2). Therefore, a ray segment
between (xi, zi) and (xj, zj) with j �= i is parameterized in real space by:

r(s) =

(
xi – s sin(ti)
zi + s cos(ti)

)
, 0 ≤ s ≤ smax, (2.1)

where s denotes the arc-length and smax is the maximum value that it can assume. A Lam-
bertian optical source is considered; hence, the intensity at the source S = [–a, a] emitted
in the direction t1 is given by:

I(t1) = 2aL cos(t1), (2.2)

where L is the luminance, a = 2 is the half width of the source S, and t1 is the angle that
the ray forms with respect to the z-axis, measured counterclockwise. A ray that leaves the
source S (line 1) can hit the reflectors (lines 2 and 3) many times before reaching the target
T (line 4). When a ray travels from a line i to another line j its new position is given by the
intersection point between the ray and line j and the new direction is computed according

Figure 1 Shape of the two-faceted cup. Each line of the
system is labeled with a number. The source S = [–2, 2]
(line 1) is located on the x-axis. The target T = [–17, 17]
(line 4) is parallel to the source and is located at a height
z = 40. The left and right reflectors (lines 2 and 3) connect
the source with the target
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to the law of reflection:

t2 = t1 – 2(t1,ν)ν, (2.3)

where (t1,ν) is the inner product between t1 and ν , ν is the unit normal to line j that the
ray hits and t1 and t2 are unit vectors describing the directions of the incident and the
reflected ray, respectively (see [1], Chap. 12, pp. 403–409). We assume that the source S
cannot receive light and the target T does not emit light. The reflectors 2 and 3 are designed
such that they emit and receive light, hence they constitute the target for the incident rays
and the source for the reflected rays.

The output intensity can be computed constructing a map from the source to the target
of the system. This map can be written as the concatenation of many which can be classi-
fied as two different kinds of maps, i.e. the map that connects the source and the target PS
of two different lines and the map that connects the target and the source PS of the same
line. Employing the inverses of these maps we are able to detect the parts on target PS illu-
minated by the source. In the next paragraph the method is presented for the two-faceted
cup depicted in Fig. 1.

2.2 Phase spaces of the optical system
Phase spaces of every line are two-dimensional spaces. The position coordinate in the
phase space (PS) of line i is the x-coordinate of the intersection point between the ray and
the line i. The direction coordinate is the sine of the angle that the ray forms with respect
to the normal of line i multiplied by the index of refraction of the medium in which the ray
is located. Let’s now introduce some notation before explaining the details of the method.
We indicate the PS with S = Q × P, where Q is the set of the position coordinates q and
P is the set of the direction coordinates p = n sin τ with n the index of refraction of the
medium in which the line is located and τ the angle between the ray segment inside the
cup and the normal ν of the line which we choose directed inwards of the optical system.
The angle τ is measured conterclockwise and τ ∈ [–π/2,π/2]. In this paper we analyze
only systems located in air (n = 1), therefore, from now on, we do not write the index n
anymore. The source and the target PS of a line i are indicated with Si and Ti, respectively.
The coordinates of every ray that reaches the line i ∈ {2, 3, 4} are indicated with (qt,i, pt,i)
on Ti. After reflection, the ray leaves line i ∈ {1, 2, 3} at the same position and with a new
direction, the new coordinates are indicated with (qs,i, ps,i) on Si. Note that qs,i = qt,i while
ps,i is obtained applying the reflection law to the direction coordinate pt,i of the incident
ray. The phase spaces Si and Ti of each line i are partitioned into different regions, (Si,j)j=2,3,4

and (Ti,k)k=1,2,3, respectively, where j �= i is the index of the line that is illuminated by i and
k �= i is the index of the line that illuminates i. Hence, we indicate with Si,j ⊂ Si the part of Si

corresponding to rays that illuminate line j and with Ti,k ⊂ Ti the part of Ti corresponding
to rays originating from the line k. For the two-faceted cup, six different phase spaces need
to be considered which are given by the following expressions:

S1 = S1,2 ∪ S1,3 ∪ S1,4,

S2 = S2,3 ∪ S2,4,

S3 = S3,2 ∪ S3,4, (2.4)
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T2 = T2,1 ∪ T2,3,

T3 = T3,1 ∪ T3,2,

T4 = T4,1 ∪ T4,2 ∪ T4,3.

We note that, as the source cannot receive light and the target cannot emit light, the re-
gions (Si,1)i=2,3 and (Ti,4)i=2,3 are not considered. The boundaries ∂Si,j are mapped into the
boundaries ∂Tj,i for every i ∈ {1, 2, 3} and j ∈ {2, 3, 4} with j �= i (edge-ray principle [8]). For
the two-faceted cup and for all systems that are formed by straight lines, they are deter-
mined analytically, see next section.

2.3 Computation of the boundaries of the patches in PS with positive luminance
Given two lines i and k with i �= k, we show how to compute the boundaries of the region
formed by the rays that leave line i and hit line k. We do that both for Si and for Tk . We
indicate with (xi,�, zi,�) and (xi,r, zi,r) the coordinates of the points located at the left and the
right end point of line i, respectively. Similarly, (xk,�, zk,�) and (xk,r, zk,r) are the coordinates
of the points located at the left and the right end point of line k, respectively. Given two
lines i and k with i �= k, ∂Si,k and ∂Tk,i are formed by four different curves, two of them
are given by all the rays that leave the end points of line i and trace out line k and, the
others two are given by the rays that trace out line i and hit the end points of line k. The
boundaries ∂Si,k and ∂Tk,i are given by

∂Si,k = ∂S1
i,k ∪ ∂S2

i,k ∪ ∂S3
i,k ∪ ∂S4

i,k ,

∂Tk,i = ∂T1
k,i ∪ ∂T2

k,i ∪ ∂T3
k,i ∪ ∂T4

k,i.
(2.5)

In the following we explain in more details the case of i = 1 and k = 4; see Fig. 2. The bound-
aries ∂S1,4 and ∂T4,1 are given in Figs. 3 and 4, respectively. ∂S1

1,4 and ∂T1
4,1 are obtained

tracing out line 4 from q4,min = –b to q4,max = b by rays leaving q1,min = –a with varying p1,
these rays are shown in Fig. 2(a), and the boundary segments ∂S1

1,4 and ∂T1
4,1 are the orange

line segments labeled with c. ∂S2
1,4 and ∂T2

4,1 are given tracing out line 1 from q1,min = –a to
q1,max = a with varying p1, such that all rays hit q4,max = b, these rays are shown in Fig. 2(b),
the boundary segments ∂S2

1,4 and ∂T2
4,1 are depicted in blue (lines segments labeled with

d). Likewise, ∂S3
1,4 and ∂T3

4,1 are obtained tracing out line 4 from q4,max = b to q4,min = –b
by rays leaving q1,max = x1,r = a with varying p1. These rays are shown in Fig. 2(c), ∂S3

1,4 and
∂T3

4,1 are the red line segments labeled with e. Finally, ∂S4
1,4 and ∂T4

4,1 are given tracing out
line 1 from q1,max = a to q1,min = –a with varying p1, such that all rays hit q4,min = –b, these
rays are shown in Fig. 2(d), ∂S4

1,4 and ∂T4
4,1 are the green lines segments labeled with f. We

remind that we use the notation (x, z) for the Cartesian coordinates system of real space,
while phase space has (q, p) coordinates. It is worth noting that q1,min = x1,�, q1,max = x1,r,
q4,min = x4,� and q4,max = x4,r.

For the two-faceted cup there is an analytic expression for every line segment ∂Sj
i,k and

∂Tj
k,i in Eq. (2.5) with j ∈ {1, . . . , 4}. For instance, the rays on the boundaries ∂S1

i,k and ∂T1
k,i

are parameterized in the (x, z)-plane by

ri,k(t) =

(
xk,� – xi,� + t(xk,r – xk,�)
zk,� – zi,� + t(zk,r – zk,�)

)
, 0 ≤ t ≤ 1. (2.6)
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Figure 2 Rays from source (line 1) to target (line 4). A = (x1� , z1,�) = (–2, 0) and D = (x1,r , z1,r) = (2, 0) are the left
and right corner points (or end points) of S (line 1), respectively. B = (x4,� , z4,�) = (–17, 40) and
C = (x4,r , z4,r) = (17, 40), are the left and right corner points (or end points) of T (line 4), respectively

Figure 3 Source phase space of line 1. Boundary of the
region S1,4

Figure 4 Target phase space of line 4. Boundary of the
region T4,1



Filosa et al. Journal of Mathematics in Industry            (2021) 11:4 Page 7 of 26

These rays are located on a vertical line segment in Si as only the pi-coordinate changes
and on a curved line in Tk as both the target position and direction vary. The analytic
expressions for ∂S1

i,k and ∂T1
k,i are

∂S1
i,k(t) =

{
(qi, pi) =

(
qi,min,

∣∣νi × r̂i,k(t)
∣∣)}, (2.7)

∂T1
k,i(t) =

{
(qk , pk) =

(
qk,max – qi,min + t(qk,max – qk,min),

∣∣νk × r̂i,k(t)
∣∣)}, (2.8)

where we have indicated with r̂i,k(t) the normalization of the ray in Eq. (2.6) and, νi and
νk are the normalized inward normals to lines i and k, respectively. Note that, sin τi =
|νi × r̂i,k(t)| and sin τk = |νk × r̂i,k(t)|. Likewise, the boundaries ∂Sj

i,k and ∂Tj
k,i are calculated

for every j ∈ {2, 3, 4} and ∂Si,k and ∂Tk,i are found using Eq. (2.5).
In Figs. 5(a)–5(f ), (∂Si,j)i�=j=2,3,4 and (∂Ti,k)i�=k=1,2,3 are depicted in blue and red, respec-

tively. The source and target PS of lines 2 and 3 have some empty regions. These parts
correspond to the regions formed by the rays that either go back to the source or are
emitted from the target. As explained in Sect. 2.2, we do not consider these regions, see
Eq. (2.5). We observe that, because of the symmetry of the optical system, S3 is the mir-
ror image of S2 after reflection in the central point (q, p) = (–9.5, 0) and translation from
(q, p) → (q + 19, p). Likewise T3 is the mirror image of S2 after the same reflection and
translation. In the next section, we show how the phase spaces are related to each other
and we define the target photometric variables on T4.

2.4 Target photometric variables
In this section we explain how to compute the target photometric variables in PS. In the
following, to simplify the notation, we indicate the target coordinates of the rays on T4

with (q, p) instead of (qt,4, pt,4). The intensity I along a given direction p ∈ [–1, 1] in target
phase space T4 is defined as a function of the luminance L(q, p):

IPS(p) =
∫ b

–b
L(q, p) dq. (2.9)

Note that the intensity is a function of p = sin(τ ) instead of τ . The parts of T4 that are
illuminated by S1 correspond to parts with positive luminance, for the other parts the
luminance is equal to zero. Assuming positive luminance on S, the following relations
hold:

L(q, p) > 0 ∀(q, p) ∈ T4,1, (2.10a)

L(q, p) ≥ 0 ∀(q, p) ∈ (T4,i)i=2,3. (2.10b)

Once a ray leaves the source S it can hit the reflectors several times before hitting the tar-
get T. To relate S and T, a map M1,4: S1 → T4 is introduced such that M1,4(qs,1, ps,1) = (q, p).
As not all parts of T4 are illuminated by the source S, the map M1,4 is not surjective. There-
fore, we need to determine the subsets of T4 illuminated by S corresponding to the regions
where the luminance is positive. To this purpose, we consider two different kinds of maps.
The first map relates the coordinates of the source and the target PS of two different lines,
we call it the propagation map. The second map relates the coordinates of the target and
the source PS of the same line, we call it the reflection map. In particular, given two lines
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Figure 5 Source and target phase spaces of every optical line

i and j with i �= j, the propagation map Pi,j: Si,j 
→ Tj,i relates Si,j with Tj,i and, it is defined
as follows:

Pi,j(qs,i, ps,i) = (qt,j, pt,j), (2.11)
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where qt,j is given by the x-coordinate of the intersection point between the ray and line
j, and pt,j is computed considering the direction of the incident ray with respect to the
normal of line j. For one single line j, the reflection map Rj,k,h : Tj,k 
→ Sj,h relates the regions
Tj,k ⊂ Tj and Sj,h ⊂ Sj. To simplify the notation, from now on we omit the dependence of
Rj,k,h from k and h, i.e., Rj,k,h = Rj. The reflection map is defined as follows:

Rj(qt,j, pt,j) = (qs,j, ps,j), (2.12)

where pt,j changes according to the reflection law and qt,j = qs,j as Rj maps the target PS into
the source PS of the same line j. Using a procedure similar to the ray transport matrices
approach (see [5], Chap. 6), the map M1,4 is described by the composition of mappings
Pi,j and Rj defined in Eqs. (2.11) and (2.12), respectively. This composition depends on
the path � followed by the rays where we refer to a path as the sequence of lines that
a ray hits during its propagation from S to T. We indicate with M1,4(�) the map M1,4

restricted to path � and with R(�) ⊂ T4 the regions on T4 formed by the rays that follow
path �. Considering all the possible paths � from S to T, all the regions R(�) with positive
luminance on T4 can be determined.

To clarify this concept, we provide the following example. Consider a ray that is emitted
from the source (line 1), first hits the left reflector (line 2) and finally reaches the target
(line 4). The path � followed by this ray is defined as � = (1, 2, 4) and the corresponding
map M1,4(�) : S1 
→ R(�) that describes the propagation of all rays that follow the path �

is defined by:

M1,4(�) : S1,2 
→ T2,1 
→ S2,4 
→ T4,2, (2.13)

which can be written as:

M1,4(�) = P2,4 ◦ R2 ◦ P1,2. (2.14)

In general, to construct the map M1,4(�) we need to know its corresponding path �. To
determine all possible paths �, instead of tracing the rays from S to T, we start considering
the rays in T4. In particular, along a given direction p ∈ [–1, 1] we consider the intersec-
tion points between the line p = const and (∂T4,i)i=1,2,3. These points are traced back to
line i from which they are emitted and their corresponding coordinates on Si and Ti are
computed. This is done applying sequentially the maps P–1

i,4 : T4,i 
→ Si,4 and R–1
i : Si 
→ Ti.

Then the same procedure is repeated considering these new coordinates on Ti. The com-
putation stops either when the points found are emitted from the source, that is when they
are located on S1, or when they reach again the target, that is when they are located on T4.
If a ray reaches S1, then a path � from S to T is found. If a ray reaches again the target T4,
then we conclude that it is not emitted by S and therefore, it is located inside the parts of
T4 with luminance equal to zero.

Finally, the inverse M–1
1,4(�) of the map M1,4(�) is constructed for every possible path �.

The map M–1
1,4(�) is the composition of the inverses of the propagation and the reflection

maps in reverse order according to the path �. For instance, for path � = (1, 2, 4), M–1
1,4(�)

is given by:

M–1
1,4(�) = P–1

1,2 ◦ R–1
2 ◦ P–1

2,4. (2.15)
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Figure 6 Tree that describes how to detect all the possible paths from S to T

The steps of the procedure are shown in the graph in Fig. 6 where the map in Eq. (2.15) is
written in red.

Using the procedure explained above, given a ray with coordinates (q, p) ∈ T4 we can
establish whether it is located inside one of the regions R(�) with positive luminance or
not. In case the ray is inside a region R(�), its corresponding coordinates (qs,1, ps,1) ∈ S1 are
obtained using M–1

1,4(�), where � is the path followed by this ray. Equation (2.10a)–(2.10b)
becomes:

L(q, p) > 0 ∀(q, p) ∈ R(�),

L(q, p) = 0 otherwise,
(2.16)

for some path � connecting S and T. Assuming a Lambertian source and employing con-
servation of luminance along a ray (see [1], Chap. 16), we have that L is a positive con-
stant inside R(�) and it has no contribution on the other parts of T4. Indicating with
qmin(�, p) and qmax(�, p) the minimum and maximum position coordinates of the inter-
section points between the boundaries ∂R(�) and line p = const, Eq. (2.9) reduces to:

IPS(p) =
∑
�

∫ qmax(�,p)

qmin(�,p)
L(q, p) dq =

∑
�

(
qmax(�, p) – qmin(�, p)

)
, (2.17)

where the sum is over all the possible paths and the second equation holds as we assume
L = 1 in R(�). Note that for a given ray with corresponding coordinates (q, p) on T4, only
one path is possible as we are assuming that all lines are reflective lines. Because of this,
the regions R(�) do not overlap each other, i.e.

⋂
�

R(�) = ∅, (2.18)
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where the intersection is over all the possible paths. In the next paragraph the details of
the procedure to compute the coordinates qmin(�, p) and qmax(�, p) are explained.

2.5 The inverse ray mapping method and the structure of the algorithm
The goal is to determine the intensity of the light that reaches the target with a given
direction p = const. Since we assume a Lambertian source, this is equal to the sum of
the lengths of the line segments given by the intersection of the line p = const and the
support of L (see Eq. (2.17)). To determine these line segments, a recursive procedure
is developed. The procedure starts on T4 with a given direction p = const and with the
parallel rays corresponding to the end points (qmin, p) = (–b, p) and (qmax, p) = (b, p). We
set the initial intensity I(p) = 0 along direction p = const. Considering the intersection
between the line p = const and the boundaries (∂T4,i)i=1,2,3 three intervals are found. Each
interval corresponds to rays emitted by line i (i ∈ {1, 2, 3}). The rays corresponding to the
end points of these intervals are traced back from T4 to Si and subsequently to Ti where i
is the line from which the rays are emitted. Then, another interval of parallel rays along the
corresponding direction in Ti has to be considered and the intersection points between
the line p = pt,i and ∂Ti,j (with j �= i, 4) are calculated, where pt,i is the new direction of the
rays traced back. The procedure continues recursively until the source is found.

Before explaining the details, let us introduce some notation. The role of the variables
we introduce will become clear later on in this section. The coordinates in Tj of the rays
traced back from line i �= j to line j are indicated with (q1

t,j, pt,j) and (q2
t,j, pt,j). The minimum

and the maximum position coordinates are qmin
t,j = min{q1

t,j, q2
t,j} and qmax

t,j = max{q1
t,j, q2

t,j},
respectively. The coordinates of the intersection points of p = pt,j with boundaries ∂Tj,i

need to be determined for every i ∈ {1, 2, 3} and j ∈ {2, 3, 4} with j �= i. They are indicated
with (umin

j,i , pt,j) and (umax
j,i , pt,j) where umin

j,i < umax
j,i . Since not all the rays whose correspond-

ing coordinates are located inside the segment [qmin
t,j , qmax

t,j ] with direction p = pt,j follow
the same path, the intersection segment [vmin

j,i , vmax
j,i ] = [qmin

t,j , qmax
t,j ] ∩ [umin

j,i , umax
j,i ] needs to

be calculated. (vmin
j,i , pt,j) and (vmax

j,i , pt,j) are the coordinates of the rays that need to be traced
back from line j to line i.

The method can be outlined as follows.
1. Calculate the intersection points (umin

4,i , p) and (umax
4,i , p) between line p = const and

∂T4,i for every i ∈ {1, 2, 3}, where umin
4,i < umax

4,i . This can be done analytically because
the exact expression of the boundaries ∂T4,j is found as explained in Sect. 2.3.

2. Calculate the intersection segment

[
vmin

4,i , vmax
4,i

]
=

[
umin

4,i , umax
4,i

] ∩ [
qmin, qmax].

3. If i = 1, the coordinates (vmin
4,1 , p) and (vmax

4,1 , p) are equal to the coordinates
(qmin(�, p), p) and (qmax(�, p), p), respectively, of the rays located on the boundary
∂R(�) with � = (1, 4). All the parallel rays with direction coordinate p and
q-position coordinate with umin

4,1 ≤ q ≤ umax
4,1 are emitted by the source and they

directly hit the target.
Update the intensity using Eq. (2.17)

I(p) = I(p) + qmax(�, p) – qmin(�, p).

4. If i �= 1, continue with the following steps.
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5. Trace back (vmin
4,i , p) and (vmax

4,i , p) from line 4 to line i to find their corresponding
coordinates on Ti

(
q1

t,i, pt,i
)

= R–1
i ◦ P–1

i,4
(
vmin

4,i , p
)
,(

q2
t,i, pt,i

)
= R–1

i ◦ P–1
i,4

(
vmax

4,i , p
)
.

6. Update the path � = (i, 4).
7. Determine qmin

t,i = min{q1
t,i, q2

t,i} and qmax
t,i = max{q1

t,i, q2
t,i}.

8. Calculate the intersection points (umin
i,j , p) and (umax

i,j , p) between line pt,i and ∂Ti,j for
every j ∈ {1, 2, 3} with j �= i.

9. Since not all rays whose corresponding coordinates are located inside the segment
[qmin

t,i , qmax
t,i ] follow the same path, compute the intersection segment

[
vmin

i,j , vmax
i,j

]
=

[
umin

i,j , umax
i,j

] ∩ [
qmin

t,i , qmax
t,i

]
.

10. For j �= 1
(a) Trace back (vmin

i,j , pt,i) and (vmax
i,j , pt,i) from i to j

(
q1

t,j, pt,j
)

= R–1
j ◦ P–1

j,i
(
vmin

i,j , pt,i
)
,(

q2
t,j, pt,j

)
= R–1

j ◦ P–1
j,i

(
vmax

i,j , pt,i
)
.

(b) Update the path � = (j,�).
(c) Put i = j and repeat the procedure from point 7.

11. If j = 1, the rays reached the source and a possible path � = (1, . . . , 4) is found.
(a) Apply

(
q1

s,1, ps,1
)

= P–1
1,i

(
vmin

i,1 , pt,i
)
,(

q2
s,1, ps,1

)
= P–1

1,i
(
vmax

i,1 , pt,i
)
.

(b) Apply the direct map M1,4(�) restricted to the path � found:

(
q1(�, p), p

)
= M1,4(�)

(
q1

s,1, ps,1
)
,(

q2(�, p), p
)

= M1,4(�)
(
q2

s,1, ps,1
)
.

(c) Update intensity

I(p) = I(p) + qmax(�, p) – qmin(�, p)

with qmin = min{q1(�, p), q2(�, p)} and qmax = max{q1(�, p), q2(�, p)}.
To clarify the technique, we make an example that describes how the target intensity along
direction p = –0.2 is calculated. From Fig. 7(a) to Fig. 7(h) the steps used in this example
are shown. A detailed description of those figures is given in the following.

The procedure starts with the rays with direction p = –0.2 on T4, where qmin = –b and
qmax = b are the left and the right end points of the target T, respectively. The intersection
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Figure 7 Inverse ray mapping for the two-faceted cup

points (umin
4,i , p) and (umax

4,i , p) of the line p = –0.2 with boundaries ∂T4,i are computed for
every i �= 4.

We start from i = 1. Therefore the coordinates (umin
4,1 , p) and (umax

4,1 , p) of the intersection
points between line p = –0.2 and the boundary ∂T4,1 are computed and these points are
depicted in Fig. 7(a). The source is now reached because i = 1 and, one possible path is
found. The points (umin

4,1 , p) and (umax
4,1 , p) are located on the boundaries of the region formed

by the rays that leave the source and directly hit the target, that is the rays located on
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Figure 7 Continued

∂R(�1) with �1 = (1, 4). Therefore, the contribution to the intensity formed by the rays
that follow the path �1 = (1, 4) is given by umax

4,1 – umin
4,1 .

We continue with i = 2. The boundary ∂T4,2 is considered in order to find other paths.
The intersection points (umin

4,2 , p) and (umax
4,2 , p) of line p = –0.2 with the boundary ∂T4,2

are calculated. They are depicted in Fig. 7(b) with the magenta dots, also the intersection
segment

[
vmin

4,2 , vmax
4,2

]
=

[
umin

4,2 , umax
4,2

] ∩ [
qmin, qmax] (2.19)

is calculated.1 Their corresponding position coordinates q1
s,2 and q2

s,2 on S2 are obtained
from:

P–1
2,4

(
vmin

4,2 , p
)

=
(
q1

s,2, ps,2
)
,

P–1
2,4

(
vmax

4,2 , p
)

=
(
q2

s,2, ps,2
)
.

(2.20)

Note that ps,2 = Const because all the lines are straight and their normals do not depend
on the location at which they are computed. Then, the corresponding direction pt,2 on T2

is calculated from:

R–1
2

(
q1

s,2, ps,2
)

=
(
q1

t,2, pt,2
)
,

R–1
2

(
q2

s,2, ps,2
)

=
(
q2

t,2, pt,2
)
.

(2.21)

Note that q1
s,2 = q1

t,2 and q2
s,2 = q2

t,2 since the reflection map does not change the position
coordinates. Equations (2.20) and (2.21) lead to:

R–1
2 ◦ P–1

2,4
(
vmin

4,2 , p
)

=
(
q1

t,2, pt,2
)
,

R–1
2 ◦ P–1

2,4
(
vmax

4,2 , p
)

=
(
q2

t,2, pt,2
)
.

(2.22)

1In T4 vmin
4,2 = umin

4,2 and vmax
4,2 = umax

4,2 because qmin = –b and qmax = b always coincide with the end points of T4.
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The map R–1
2 ◦ P–1

2,4 is depicted in red in Fig. 6. The minimum qmin
t,2 = min{q1

t,2, q2
t,2} and the

maximum qmax
t,2 = max{q1

t,2, q2
t,2} are calculated. The points with coordinates (qmin

t,2 , pt,2) and
(qmax

t,2 , pt,2) are depicted in Fig. 7(c) where pt,2 = 0.82. To understand whether the corre-
sponding rays are illuminated or not by the source, the preceding procedure used for T4

is now applied to T2 along direction pt,2 = 0.82.
Next, the intersection points (umin

2,i , pt,2) and (umax
2,i , pt,2) of line pt,2 = 0.82 with boundaries

∂T2,i are computed for every i ∈ {1, 3}. We start from the boundary ∂T2,1 obtaining the
points (umin

2,1 , pt,2) and (umax
2,1 , pt,2) shown in Fig. 7(c). Now, the position coordinates vmin

2,1 =
max{qmin

t,2 , umin
2,1 } and vmax

2,1 = min{qmax
t,2 , umax

2,1 } need to be considered. All the rays located in-
side the segment [vmin

2,1 , vmax
2,1 ] in T2 and with direction pt,2 follow the path �2 = (1, 2, 4). In

particular, the rays corresponding to the coordinates (vmin
2,1 , pt,2) and (vmax

2,1 , pt,2) are located
on the boundaries of the region R(�2) on T4 formed by all the rays that follow path �2.
Their corresponding coordinates (q1(�2, p), p) and (q2(�2, p), p) on T4 are obtained from:2

P2,4 ◦ R2
(
vmin

2,1 , pt,2
)

=
(
q1, p

)
,

P2,4 ◦ R2
(
vmax

2,1 , pt,2
)

=
(
q2, p

)
.

(2.23)

The rays corresponding to the coordinates (q1, p) and (q2, p) are located on the boundary
∂R(�2) along direction p = –0.2. Indicating with qmin = min{q1, q2} and qmax = max{q1, q2},
the distance qmax – qmin gives the contribution to the intensity I(p) of the rays located in
R(�2) where p = –0.2.

T2 can also be illuminated by line 3, therefore the intersection points (umin
2,3 , pt,2) and

(umax
2,3 , pt,2) of line pt,2 = 0.82 and ∂T2,3 are calculated, these points are depicted in Fig. 7(d).

The coordinates (vmin
2,3 , pt,2) and (vmax

2,3 , pt,2) are shown in the same figure. As the source is
not reached yet (i = 3), the rays corresponding to (vmin

2,3 , pt,2) and (vmax
2,3 , pt,2) are followed

back using the inverses of the propagation and the reflection maps. The coordinates on T3

are shown in Fig. 7(e) with blue circles and they are obtained from:

R–1
3 ◦ P–1

3,2
(
vmin

2,3 , pt,2
)

=
(
q1

t,3, pt,3
)
,

R–1
3 ◦ P–1

3,2
(
vmax

2,3 , pt,2
)

=
(
q2

t,3, pt,3
)
.

(2.24)

The minimum and the maximum position coordinates are qmin
t,3 = min{q1

t,3, q2
t,3} and qmax

t,3 =
max{q1

t,3, q2
t,3}, respectively. Since [qmin

t,3 , qmax
t,3 ] ⊂ [umin

3,2 , umax
3,2 ], we have that vmax

3,2 �= umax
3,2 ,

this means that the rays with corresponding position coordinates inside the interval
[qmax

t,3 , umax
3,2 ] will follow a different path. The procedure continues recursively. It stops ei-

ther when the rays encounter the source, i.e., when i = 1, or when no intersection points
between the direction p = pt,j and the boundaries ∂Tj,i are found for any i = 1, 2, 3 with
i �= j.

If the source is reached, then a valid path � = (1, 3, 2, 4) is found. Using the inverse of
the propagation map, we compute

P–1
1,3

(
qmin

t,3 , pt,3
)

=
(
q1

s,1, ps,1
)
,

P–1
1,3

(
qmax

t,3 , pt,3
)

=
(
q2

s,1, ps,1
)
.

(2.25)

2With a slight abuse of notation we indicate q1(�, p) with q1 and q2(�, p) with q2.
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The direct map M1,4(�) : S1 
→ R(�) restricted to path � = (1, 3, 2, 4), i.e.,

M1,4 = P2,4 ◦ R2 ◦ P3,2 ◦ R3 ◦ P1,3 (2.26)

is applied to the coordinates (q1
s,1, ps,1) and (q2

s,1, ps,1) giving:

M1,4
(
q1

s,1, ps,1
)

=
(
q1(�, p), p

)
,

M1,4
(
q2

s,1, ps,1
)

=
(
q2(�, p), p

)
.

(2.27)

The coordinates (q1, p) = (q1(�, p), p) and (q2, p) = (q2(�, p), p) located on ∂R(�) in T4 are
found. Introducing qmin(�, p) = min{q1, q2} and qmax(�, p) = max{q1, q2}, the contribution
to the intensity due to the rays that follow the path � is given by

I(p) = I(p) + qmax(�, p) – qmin(�, p). (2.28)

If no intersection points are found, then the rays traced are not emitted by the source,
therefore no contribution to the intensity needs to be added. This is, for instance, the case
of rays with coordinates (vmin

2,3 , 0.82) and (vmax
2,3 , 0.82) on T2 in Fig. 7(d). Below we explain

this case in detail.
In Fig. 7(e), the coordinates (qmin

t,3 , pt,3) and (qmax
t,3 , pt,3) in T3 with pt,3 = –0.29 are shown.

They are obtained from:

R–1
3 ◦ P–1

3,2
(
vmin

2,3 , 0.82
)

=
(
q1

t,3, pt,3
)
,

R–1
3 ◦ P–1

3,2
(
vmax

2,3 , 0.82
)

=
(
q2

t,3, pt,3
)
.

(2.29)

From Fig. 7(e) we note that there are no intersection points of line pt,3 = –0.29 with ∂T3,1.
So, only the coordinates of the intersections (umin

3,2 , –0.29) and (umax
3,2 , –0.29) between line

pt,3 = –0.29 and ∂T3,2 are calculated. Next, the intersection interval

[
vmin

3,2 , vmax
3,2

]
=

[
umin

3,2 , umax
3,2

] ∩ [
qmin

t,3 , qmax
t,3

]
, (2.30)

formed by parallel rays with direction pt,3 = –0.29, is considered. Using:

R–1
2 ◦ P–1

2,3
(
vmin

3,2 , –0.29
)

=
(
qmin

t,2 , pt,2
)
,

R–1
2 ◦ P–1

2,3
(
vmax

3,2 , –0.29
)

=
(
qmax

t,2 , pt,2
)
,

(2.31)

the corresponding coordinates (qmax
t,2 , pt,2) and (qmin

t,2 , pt,2) on T2 are found (Fig. 7(f )) with
pt,2 = –0.41. Now the procedure is repeated again for T2 along the direction pt,2 = –0.41.
No intersection points between line pt,2 = –0.41 and ∂T2,1 occur. Only, the intersection
points (umin

2,3 , pt,2) and (umax
2,3 , pt,2) of line pt,2 = –0.41 and ∂T2,3 are found (see Fig. 7(f )). The

intersection segment

[
vmin

2,3 , vmax
2,3

]
=

[
qmin

t,2 , qmax
t,2

] ∩ [
qmin

t,2 , qmax
t,2

]
(2.32)
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is calculated. The coordinates on T3 corresponding to the end points of the intersection
interval are found using:

R–1
3 ◦ P–1

3,2
(
vmin

2,3 , pt,2
)

=
(
qmin

t,3 , pt,3
)
,

R–1
3 ◦ P–1

3,2
(
vmax

2,3 , pt,2
)

=
(
qmax

t,3 , pt,3
)
,

(2.33)

where pt,3 = 0.91 (see Fig. 7(g)).
Considering the PS T3 and the direction pt,3 = 0.91, we note that there are no intersec-

tion points between line pt,3 = 0.91 and both ∂T3,1 and ∂T3,2. Indeed, the whole segment
[qmin

t,3 , qmax
t,3 ] is outside both T3,2 and T3,1. Because of this, all the rays with q-coordinates

inside the interval [qmin
t,3 , qmax

t,3 ] and with direction p = pt,3 are not illuminated by the source
and no new real path is found.

Finally, the recursive procedure is applied to T4,3. The first step is depicted in Fig. 7(h).
We decided not to show all the steps for T4,3 as they are similar to those used for T4,2 and
explained above.

Finally, to compute the intensity along another direction pk ∈ [–1, 1] on T4, the pro-
cedure explained for p = –0.2 is repeated for p = pk . In this way we find all the possible
paths � and the regions R(�) with positive luminance on T4. Furthermore, considering
every time the coordinates located on the boundaries of the regions Ti,j for every j, also the
boundaries ∂R(�) are determined for a given path � as well as the coordinates qmax(�, p)
and qmin(�, p) for every p ∈ [–1, 1]. In Algorithm 2.1 they are the main steps to calculate
the intensity I(p) along a given direction p = pk in T4, where for the first step we take j = 4.

In the next section we provide the numerical results for the two-faceted cup.

3 Numerical results for the two-faceted cup
To demonstrate the accuracy of the method, a comparison with the ray tracing approach
is provided. In particular, we compare our method with MC ray tracing. The MC intensity
is computed tracing randomly a large number of rays from the source to the target of the
system. Then, a partitioning P : –1 = p0 < · · · < pNb = 1 of the interval [–1, 1] is considered,
where Nb indicates the number of bins in the partitioning. The MC intensity along the
direction p ∈ [ph, ph+1] is given by the ratio of the number of rays Nr[ph, ph+1] that arrive
at the bin [ph, ph+1] and the total number of rays Nr[–1, 1] that arrive at the target, that is:

ÎMC(p) =
Nr[ph, ph+1]

Nr[–1, 1]
, (3.1)

for every p ∈ [ph, ph+1]. Hence, the MC intensity is piecewise constant. Note that ÎMC is
normalized. In order to compute the intensity distribution for all the directions, the par-
titioning P of the target is considered. Then, the procedure explained above is repeated
for (ph+1/2 = 1

2 (ph+1 + ph))h=0,...,Nb–1 and the MC intensity is calculated over every bin. The
profile of the MC intensity is depicted in Fig. 9 with a blue line. There the intensity is
calculated tracing 107 rays and taking Nb = 100.

Next, we compute the intensity at the target employing the PS ray mapping method. Us-
ing the procedure explained in Sect. 2.5, we are able to detect all the possible paths � that a
ray can follow during the propagation through the system. For the two-faceted cup 5 differ-
ent paths are found. Given a path �, the coordinates (qmin(�, ph), ph) and (qmax(�, ph), ph)
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Algorithm 2.1 Recursive procedure for the intensity calculation
Initialize j = 4, qmin

t,4 = qmin = –b, qmax
t,4 = qmax = b, pt,4 = p = const,

� = (4).
1: procedure INTENSITY COMPUTATION(j, qmin

t,j , qmax
t,j , pt,j, �)

2: for i = 1, 2, 3 do
3: if i �= j then
4: Compute the intersection points (umin

j,i , pt,j) and (umax
j,i , pt,j) between pt,j and ∂Tj,i

5: � ← (i,�)
6: Compute

[
vmin

j,i , vmax
j,i

]
=

[
umin

j,i , umax
j,i

] ∩ [
qmin

t,j , qmax
t,j

]
7: if (i �= 1) & (i �= 4) then
8: Apply

(
q1

t,i, pt,i
)

= R–1
i ◦ P–1

i,j
(
vmin

j,i , pt,j
)

(
q2

t,i, pt,i
)

= R–1
i ◦ P–1

i,j
(
vmax

j,i , pt,j
)

9: Determine

qmin
t,i = min

{
q1

t,i, q2
t,i
}

and qmax
t,i = max

{
q1

t,i, q2
t,i
}

10:
11: return INTENSITY COMPUTATION(i, qmin

t,i , qmax
t,i , pt,i, �)

12: else
13: if i = 1 then
14: if j �= 4 then
15: Apply

(
q1

s,1, ps,1
)

= P–1
1,j

(
vmin

j,1 , pt,j
)

(
q2

s,1, ps,1
)

= P–1
1,j

(
vmax

j,1 , pt,j
)

(
q1(�, p), p

)
= M1,4(�)

(
q1

s,1, ps,1
)

(
q2(�, p), p

)
= M1,4(�)

(
q2

s,1, ps,1
)

16: Calculate
17: qmin(�, p) = min{q1, q2}, and qmax(�, p) = max{q1, q2},
18: where q1 := q1(�, p) and q2 := q2(�, p).
19:
20: return I(p) = I(p) + qmax(�, p) – qmin(�, p).
21: else
22: qmin(�, p) = vmin

4,j and qmax(�, p) = vmax
4,j

23: return I(p) = I(p) + qmax(�, p) – qmin(�, p).
24: end if
25: else
26: return I(p)
27: end if
28: end if
29: end if
30: end for
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Figure 8 Target phase space for the two-faceted
cup divided into 100 bins. Five different paths are
found. The rays with coordinates (qmin ,p) and
(qmax ,p) in T4 that are located at the boundaries
∂R(�) are depicted with dots, the color of the dots
depends on the path � followed by the rays. Using
the ray mapping method, only these rays need to be
traced from S to T for the intensity computation

Figure 9 Intensities for the two-faceted cup with
three different approaches. The red line shows the
exact intensity. The blue line depicts the intensity
computed with MC ray tracing with 107 rays. The
dotted green line shows the intensity found with the
new method

of the rays located on ∂R(�) are determined for every p = (ph)h=0,...,Nb where the values
ph are given from the partitioning P used for MC ray tracing. These rays are depicted in
Fig. 8, where all the rays that follow the same path are shown with the same color. The PS
intensity is obtained from Eq. (2.17). Note from Fig. 8 that only 2Nb rays need to be traced
through the system for the intensity computation. The averaged normalized PS intensity
is given by:

ÎPS
(
ph+1/2) =

∫ ph+1

ph IPS(p) dp∫ 1
–1 IPS(p) dp

, (3.2)

for h = 0, 1, . . . , Nb – 1, where the integrals in the previous equation are calculated using
the trapezoidal rule. The profile of the PS intensity is depicted in Fig. 9 with the dotted
green line.

For the two-faceted cup, the intensity can be computed analytically. This intensity is
taken as the reference intensity Îref and, it is depicted in Fig. 9 with a red line. The results
in Fig. 9 show that all the intensity’s profiles are all similar to each other. Therefore, we can
claim that our method computes the intensity correctly.

In order to compare the speed of convergence of the two methods, we consider the error
between the approximate intensities ÎA (A = MC, PS) and the exact intensity Îexact = Îref .
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Figure 10 Error between the approximated
intensities and the reference intensity as a function
of the CPU time (in seconds). The convergence of
the ray tracing approach is depicted with the blue
line. The error decreases increasing the number of
rays traced. The green dot shows the error obtained
with the PS method

This error is defined as:

error =
∑Nb

h=1 |ÎA(ph) – Îref (ph)|
Nb

. (3.3)

As the accuracy of the ray tracing method depends on the number of rays traced, the MC
intensity is calculated for an increasing numbers of rays traced through the system and,
the error between the approximate intensity and the reference intensity is computed using
Eq. (3.3). In Fig. 10 the behavior of the MC error as a function of the CPU-time is depicted
with the blue line. Increasing the number of rays the MC error decreases proportionally to
the inverse of the square root of the number of rays traced. Next, the PS error is computed
using Eq. (3.3). It is depicted in Fig. 10 with the green dot. From the numerical results
shown in Fig. 10 we can conclude that the PS ray mapping method is able to compute the
output intensity of the two-faceted cup exactly. Also, it is much faster than the classical
ray tracing approach when an error smaller than 10–4 is required.

4 Generalization of the method to the multi-faceted cup
The method can be generalized to more complicated optical systems. In particular, it can
be used for all systems formed by straight line segments. The goal of this section is to show
the generalization of the method to the multi-faceted cup which is a system with many left
and right segments as reflectors. The design of this system is explained below.

A multi-faceted cup is an optical system formed by a source, a target and Nl–2 reflectors,
where Nl is the number of optical line segments that form the system. Defining a Cartesian
coordinate system (x, z), the multi-faceted cup is symmetric with respect to the optical axis
(z-axis). An example of this system is depicted in Fig. 11 where all the lines are labeled
with numbers. The source S = [–a, a] (line 1) and the target T = [–b, b] (line 22) are two
segments both perpendicular to the optical axis, with a = 2 and b = 17. S is located at
the height z = 0 while T has a height z = 40. Both sides of the system are divided into
10 segments which connect S with T. The 10 adjacent segments at the left of the system
(lines 2, . . . , 11) connect the left extreme of the source with the left extreme of the target.
Similarly, 10 adjacent segments at the right of the system (lines 12, . . . , 21) connect the right
extreme of the source with the right extreme of the target. These segments are designed as
follows. The intervals [–b, –a] and [a, b] are divided into 10 subintervals of the same length
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Figure 11 Shape of the 20-faceted cup. The system
is formed by 22 different line segments: the source S,
the target T, 10 left reflectors and 10 right reflectors.
S = [–2, 2] is located at z = 0. T = [–17, 17] is parallel to
the source and it is located at a height z = 40. The
x-coordinates of the extremes of the reflectors are
equidistributed. The z-coordinates are on a parabola
that passes through the end points of the target and
has as symmetry axis the z-axis. All the lines are
located in air

Figure 12 Target phase space of the 20-faceted cup.
The red lines are the boundaries (∂T22,k )k=1,...,21 which
are determined analytically. The numbers inside the
regions T22,k indicate the value of the index k

(b – a)/10. The x-coordinates of the end points of the line segments 12, . . . , 21 are equal to
the x-coordinates of the subintervals of [a, b], while the x-coordinates of the end points of
the line segments 2, . . . , 11 are equal to the x-coordinates of the subintervals of [–a, –b].
The z-coordinates of every end point of the line segments 2, . . . , 21 are given substituting
their x-coordinates into the equation of the parabola whose symmetric axis is equal to the
z-axis and that passes through the points (–17, 40) and (17, 40). The 20-faceted cup is now
well defined and can be seen as an approximation of a parabolic reflector. All the optical
lines i with i ∈ {1, . . . , 22} are located in air, therefore the refractive index ni = 1 for every i.

Similarly to the two-faceted cup, also for the multi-faceted cup we define the phase
spaces of all the lines i ∈ {1, . . . , Nl} as in Sect. 2.5, for the 20-faceted cup Nl = 22. Note
that we always choose the index of the target equal to the index of the number of lines
that form the system Nl. For the system in Fig. 11, 42 different phase spaces need to be
considered. In general, for a system formed by Nl straight line segments, 2Nl – 2 phase
spaces are considered. For all the systems formed by straight line segments, the boundaries
(∂Si,j)i�=j=2,...,Nl and (∂Ti,k)i�=k=1,...,Nl–1 of the regions that form every PS can be determined as
explained in Sect. 2.3.

The boundaries (∂TNl,k)k=1,...,Nl–1 for the 20-faceted cup are depicted in Fig. 12 with red
lines. All the possible paths that the rays can follow when propagating within the 20-
faceted cup are determined using the same algorithm developed for the two-faceted cup
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and explained in Sect. 2.5. As the number of optical lines increases, the number of possible
paths increases as well. Therefore, we have to construct a more complicated tree than the
one in Fig. 6. Despite this, the algorithm explained in the previous section still works fine
and, also for the multi-faceted cup we are able to determine all the possible paths � and all
the regions R(�) with positive luminance at target PS TNl. Assuming a Lambertian source,
only the rays located at the boundaries of these regions need to be computed. Therefore,
for a given direction p = const only the position coordinates qmin(�, p) and qmax(�, p) of
the intersection points between the boundaries ∂R(�) and the line p = const are needed
for every possible path �. Finally, the target intensity IPS(p) along the direction p is ob-
tained employing Eq. (3.2). Numerical results for a 20-faceted cup are given in the next
section.

5 Numerical results for the 20-faceted cup
In this section the results for the 20-faceted cup are presented. We compute the target
intensity both with the inverse ray mapping method and MC ray tracing. The same parti-
tioning P of the interval [–1, 1] used for the two-faceted cup is considered. The normalized
MC intensity and the normalized PS intensity ÎPS are computed. Their profiles are depicted
in Fig. 13 with a blue line and a green dotted line, respectively. They are compared with a
reference intensity Îref (red line) which is computed using MC ray tracing with 108 rays.
Note that the intensity profile in Fig. 13 is more concentrated around the direction p = 0
than the intensity of the two-faceted cup (see Fig. 9). In particular, increasing the number
of left and right reflectors the intensity profile becomes more and more peaked around
the center approaching the profile of a parabolic reflector (see [3]).

In order to show the performance of the new method, we calculate the error between the
approximate intensities ÎA (A = MC, PS) and the reference intensity Îref from Eq. (3.3). In
Fig. 14 the speed of convergence for MC ray tracing is shown in blue. The better accuracy
(the right most red point in Fig. 14) is obtained tracing 108 rays. Also, the PS intensity is
computed several times increasing every time the number of bins used in the trapezoidal
rule to approximate the integrals in Eq. (3.2). This has to be done in order to find the av-
eraged PS intensity ÎPS over every bin. The error for the ray mapping method is calculated
for all the approximated intensities. Increasing the number of bins in the trapezoidal rule,
the PS error decreases. We remark that the PS method gives the value of the intensity
pointwise, therefore we can compute the PS intensity without numeric integration. Nev-

Figure 13 Intensity for the 20-faceted cup. The red
line shows the reference intensity computed using
MC ray tracing with 108 rays. The blue line depicts
the MC intensity with 107 rays. The green and
dotted line shows the intensity found with the ray
mapping method
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Figure 14 Error of the approximated intensities as a
function of the CPU time. The convergence of MC
ray tracing is depicted with the blue line. The PS
error is shown with the green dots. The ray mapping
method is more accurate than MC ray tracing and it
is faster in case an error smaller than, say 10–4, is
desired

ertheless, we calculate the averaged intensity because we want to compare it with the MC
intensity ÎMC.

The error convergence is depicted in Fig. 14 with the red line. Since all the boundaries
of the regions in PS are calculated exactly, the PS intensity is analytic. From Fig. 14 we ob-
serve that the minimum difference between the reference intensity and the approximated
intensity found with the ray mapping method has an order of magnitude of 10–6. This
is due to the fact that for the 20-faceted cup the intensity cannot be computed exactly.
Therefore, we took as reference intensity an intensity computed with MC ray tracing us-
ing 7.5 ∗ 108 rays which is not the exact intensity. The error between the normalized exact
intensity Îexact and the normalized approximate intensity ÎA is given by:

1
Nb

Nb∑
h=1

∣∣Îexact
(
ph) – ÎA

(
ph)∣∣

≤ 1
Nb

( Nb∑
h=1

∣∣Îexact
(
ph) – Îref

(
ph)∣∣ +

Nb∑
h=1

∣∣Îref
(
ph) – ÎA

(
ph)∣∣). (5.1)

Extrapolating the MC error we obtain an approximation of the difference between the
reference solution (MC ray tracing with 7.5 ∗ 108 rays) and the exact intensity, this error is
depicted in Fig. 14 with the cyan dot. From numerical simulation we obtain the difference
between the extrapolated value and the exact intensity

Nb∑
h=1

∣∣Îexact
(
ph) – Îref

(
ph)∣∣/Nb ≈ 1.68 ∗ 10–6,

where Nb = 100 The results show that

Nb∑
h=1

∣∣Îexact
(
ph) – Îref

(
ph)∣∣/Nb ≈

Nb∑
h=1

∣∣Îref
(
ph) – ÎPS

(
ph)∣∣/Nb.

Therefore, we claim that the error found with the inverse ray mapping method is also due
to the MC error. We can conclude that the inverse ray mapping method performs very
well also for more complicated systems. Compared to MC ray tracing the new method is
not only faster but also much more accurate.
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6 Conclusions
In this paper, we presented an inverse method to compute the intensity of light emitted by
the source and received by the target of a given optical system. We tested our method for
two-dimensional optical systems formed by straight line segments. The method employs
the phase spaces of all the lines that form the system. All these phase spaces are related to
each other through two different kinds of maps. A concatenation of these two maps gives
a map that connects the coordinates of the rays at the source with those at the target.
Employing the inverse of the concatenated map, all the possible paths that rays can follow
during their propagation are found. Only the rays located on the boundaries of the regions
with positive luminance are traced, where every region is formed by rays that follow the
same path during their propagation. Assuming constant luminance, only these rays are
needed to calculate the output intensity.

We presented numerical results for a simple system: the two-faceted cup. We employ the
PS of all the lines that form the system, each of them is divided into regions the boundaries
of which are determined exactly. Numerical results show that the exact output intensity is
found. We compared our method with MC ray tracing showing significant advantages in
terms of the accuracy and the computational time.

Then, we explained how the method can be extended to more complicated optical sys-
tems. We took as an example a system with 10 left and 10 right segments as reflectors,
the so-called 20-faceted cup. Also for the generalized system, the boundaries of the re-
gions that form every PS are determined exactly. This is true for all the systems formed by
straight lines. This allows finding the analytic output intensity. To validate our method, the
intensity found using the new technique is compared with the MC intensity. To demon-
strate both the accuracy and speed advantages, numerical results are presented also for
the 20-faceted cup.

In this paper we presented the method for systems where only reflection plays a role.
Currently we are extending the method to more complicated systems formed by curved
lines and to systems where also refraction occurs. Future work might investigate systems
with Fresnel reflections.

7 Nomenclature

r(s) Parametrization of a ray in the optical system
s arc-length
S Light source
T Target
Nr Number of rays
Nb Number of bins
Nl Number of optical lines
Q Set of the position coordinates of the rays
P Set of the direction coordinates of the rays
S = Q × P Phase space of the rays with position in Q and direction in P
Si Source phase space of line i
Si,j Part of Si that illuminates line j with i �= j
Ti Target phase space of line i
Ti,j Part of Ti that is illuminated by line j with i �= j
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ni Index of refraction of the medium in which the line i is located
νi Normal to line i
qs,i Position coordinates of the rays on Si

qt,j Position coordinates of the rays on Tj

τi Angle between the ray that hits line i and νi, measured
counterclockwise

ps,i Direction coordinates on Si, ps,i = ni sin(τi)
pt,i Direction coordinates on Ti, pt,i = ni sin(τi)
� Path followed by the rays
R(�) Regions in target PS formed by rays that follow path �, R(�) ⊂ TNl

M1,Nl Map from S1 into TNl

M1,Nl(�) Map from S1 to R(�)
Pi,j Propagation map from Si to Tj

Rj Reflection map from Tj to Sj

qmin(�, p) Minimum position coordinate on ∂R(�) along the direction p
qmax(�, p) Maximum position coordinate on ∂R(�) along the direction p
qmin

t,j (p) Minimum position coordinate on Tj with momentum p
qmax

t,j (p) Maximum position coordinate on Tj with momentum p
umin

j,i (p) Minimum position coordinate of the intersection points of p = pt,j

with ∂Tj,i

umax
j,i (p) Maximum position coordinate of the intersection points of p = pt,j

with ∂Tj,i

vmin
j,i max{qmin

t,j , umin
j,i }

vmax
j,i min{qmax

t,j , umax
j,i }

L(q, p) Luminance at the target
ÎMC(p) Monte Carlo normalized intensity at the target
ÎPS(p) Phase space averaged and normalized intensity at the target
Îref (p) Reference normalized intensity at the target
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