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Abstract
This paper presents a model order reduction approach for large scale high
dimensional parametric models arising in the analysis of financial risk. To understand
the risks associated with a financial product, one has to perform several thousand
computationally demanding simulations of the model which require efficient
algorithms. We establish a model reduction approach based on a variant of the
proper orthogonal decomposition method to generate small model approximations
for the high dimensional parametric convection-diffusion-reaction partial differential
equations. This approach requires to solve the full model at some selected parameter
values to generate a reduced basis. We propose an adaptive greedy sampling
technique based on surrogate modeling for the selection of the sample parameter
set. The new technique is analyzed, implemented, and tested on industrial data of a
floater with cap and floor under the Hull–White model. The results illustrate that the
reduced model approach works well for short-rate models.
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1 Introduction
It is essential to be aware of the financial risk associated with an invested product. The risk
analysis of financial instruments often requires the valuation of such instruments under a
wide range of future market scenarios. The market scenarios (e.g., values of equity prices,
stock indices, foreign exchange rates, interest rates) are then input parameters in a valua-
tion function that delivers the fair value of such financial instruments. Examples of such
risk analysis tasks are the calculation of Value-at-Risk (VaR) or the expected shortfall to
estimate worst-case scenarios of financial holdings [1–3]. Three different VaR approaches
are widely used: (1) The parametric VaR assumes a given distribution of underlying risk
factors (e.g., equity prices or processes of stock indices). The future parametric value of
a financial instrument can then be estimated via its sensitivities with respect to the un-
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derlying risk factors. (2) The historical VaR approach applies historic day-to-day changes
of the underlying prices to the current status (today) to obtain an empiric distribution
of tomorrow’s underlying prices. When a data range of one year (approx. 250 business
days) is used, the value of the financial holding has to be calculated 250 times. (3) Monte
Carlo VaR applies a Monte Carlo simulation to obtain a wide range of underlying values.
Again, to calculate the values of the instrument, a valuation function has to be used. To
obtain reasonably accurate results, Monte Carlo VaR typically needs thousands or tens of
thousands of valuations.

Credit and debt value adjustments (CVA, DVA) are estimates of possible losses when a
counterparty in a financial portfolio defaults [4]. The difference between the credit-risk-
free portfolio value and the true portfolio value in the presence of credit risk depends
on the future liabilities of the counterparty and its default risk. For the generation of ex-
posure scenarios, Monte Carlo simulation is the method of choice. Frequently, the posi-
tions between two market participants (often banks) contain many different risk factors
(e.g., instruments in different currencies). In such cases, exposure calculation is a high-
dimensional problem.

Packaged retail and insurance-based investment products (PRIIPs) are financial instru-
ments that are packaged and offered to retail investors. We will come back to the defi-
nition of packaged and their categorization in Sect. 2. In order to make PRIIPs from dif-
ferent manufacturers more comparable concerning their risks and returns, the European
regulation (EU) 1286/2014 requires manufacturers of PRIIPs to supply key information
documents (KIDs) to possible retail investors that are easy to read and to understand [5].
The commission delegated regulation (EU) 2017/653 formulates the details of how the
risk and the possible returns of a PRIIP have to be calculated [6]. There are four different
categories of PRIIPs. In this paper, we concentrate on Category 3 instruments, for which at
least 10,000 market data scenarios have to be generated, and the PRIIP has to be valuated
under these scenarios. While the time horizon (at which the distribution of future values
is to be simulated) of VaR calculations is typically quite short (one business day or ten
business days, sometimes until the end of the fiscal quarter), the time horizon of PRIIPs is
the recommended holding period (RHP) of the PRIIP. This is typically in the range of years
or even (e.g., in the case of structured life insurance contracts) decades. As a consequence,
the calculation of PRIIPs key figures is computationally much more challenging than a VaR
calculation of the same instrument. The commission delegated regulation for PRIIPs does
not prescribe which valuation functions should be used. Therefore, one can use any ap-
propriate valuation function, namely plain discounting cash flows, closed-form solutions
of Black–Scholes or Black 76 [7], numerical schemes for finance-related partial differen-
tial equations (PDEs) [1], or Monte Carlo and Quasi Monte Carlos Schemes for stochastic
differential equations arising from e.g., Libor market models [8, 9]. When a financial in-
strument is equipped with optionalities like callabilities (for the issuer) or putabilities (for
the investor) or when the instrument is path-dependent (e.g., autocallable instruments,
target redemption notes), the valuation functions are more complex PDEs [10–12].

In this paper, the financial instruments are evaluated via the dynamics of short-rate
models [13], based on convection-diffusion-reaction partial differential equations. The
choice of the short-rate model depends on the underlying financial instrument. Some of
the prominent financial models are the one-factor Hull–White model [14], the shifted
Black–Karasinski model [15], and the two-factor Hull–White model [16]. These models
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are calibrated based on market data like yield curves that generate a high dimensional pa-
rameter space [13]. In short, to perform the risk analysis, the financial model needs to
be solved for such a high dimensional parameter space, and this requires efficient algo-
rithms. For instruments with high complexity and long-time horizons, computing times
of minutes for a single valuation are not unusual.

Thus, in this paper, we establish a parametric model order reduction (MOR) approach
based on a variant of the proper orthogonal decomposition approach, which significantly
reduces the overall computation time [17, 18]; (the POD method is also known as the
Karhunen–Loéve decomposition [19] or principal component analysis [20] in statistics).
This nonlinear MOR approach is computationally feasible [21] as it determines low di-
mensional linear (or affine) subspaces [22, 23] via a truncated singular value decomposi-
tion of a snapshot matrix [24], that is computed by simulating the high dimensional para-
metric model for a small number of pre-selected training parameter values. The question
of how to select these parameters is often the most challenging part of the process. Typ-
ically, one uses a fixed or uniform sampling [25], but this may neglect vital regions in the
case of high dimensional parameter spaces.

We present a greedy sampling algorithm to determine the best suitable parameter set,
see also [26–28]. The basic idea is to select the parameters at which the error between
the reduced and the high dimensional model is maximal. We compute the snapshots us-
ing these parameters and thus obtain the best suitable reduced basis to generate a fairly
accurate reduced model. Since the calculation of the relative error between the full and
reduced model is expensive, we also develop error estimators similar to [29, 30]. The clas-
sical greedy sampling algorithm then picks optimal parameters which yield the highest
values for the error estimator. However, it is not computationally feasible to compute an
error estimator for the entire parameter space, so we locate the parameters using an adap-
tive method by constructing a surrogate model for the error estimator, similar to [26, 28].
We construct this surrogate model based on the principal component regression (PCR)
technique [31].

To summarize, this paper presents an approach to select the most prominent parameters
(or scenarios) for which we solve the high dimensional model to obtain a reduced order
model. Thus, instead of performing thousands of costly simulations, we perform few ex-
pensive computations and simulate the remaining scenarios with the help of the reduced
model. In this work, we focus on the one-factor Hull–White model [32], and we illustrate
the results with a numerical example of a floater with cap and floor [33]. For more details,
see the technical report [34].

The paper is organized as follows. Section 2 discusses European regulations of PRIIPs
and presents a flowchart explaining the calculation steps for a Category 3 PRIIP. Section 3
explains the construction of a short-rate model. The projection-based model order re-
duction technique is presented in Sect. 4. The selection of optimal sampling parameters
based on the classical greedy approach is presented in Sect. 4.1 and based on the adaptive
greedy method in Sects. 4.2 and 4.3. Numerical results for the example of a floater are
presented in Sect. 5. Appendix B addresses the simulation procedure for yield curves and
the calibration of model parameters based on these simulated yield curves is described
in Appendix C. In Appendix D a finite difference method for the Hull–White model is
presented.
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2 The European regulation of PRIIPs
The keywords of PRIIPs are packaged and retail investment. When a financial instrument
manufacturer has to decide if a key information document (KID) has to be provided, the
following two questions have to be answered with yes. Is the instrument offered to retail
investors, and is it packaged? If the instrument is only offered to professional investors,
e.g., banks, insurance firms, capital management firms, then no KID has to be provided.
Examples are fix-to-floating swaps or caps between banks. If the same fix-to-floating swap
is offered to a retail investor, a KID has to be supplied. Again, if an instrument is offered
to a retail investor but not packaged, no KID is necessary. Examples of such instruments
are bonds with fixed-rate interest, shares of companies traded at exchanges.

A KID must contain the following points on not more than three A4 pages:
1. General information on the product: Name of the product, name of the

manufacturer, and its web address, date of the KID, name of the legal authorities for
supervision.

2. What is this product?
3. What are the risks and what could I get in return?
4. What happens if [the name of the PRIIP manufacturer] is unable to pay out?
5. What are the costs?
6. How long should I hold it and can I take my money out early?
7. How can I complain?
8. Other relevant information.

To answer the question No. 3, one has to perform several thousand costly numerical sim-
ulations of the underlying instrument using an appropriate financial model. The commis-
sion delegated regulation (EU) 2017/653 formulates the details of how the risk and the
possible returns of a PRIIP have to be calculated. The delegated regulation organizes PRI-
IPs into four categories.

Category 1: PRIIPs include instruments where the investor can loose more than the
amount invested, but also options, futures, swaps instruments where prices
are available on a basis less than monthly. A Libor cap is one of the
examples.

Category 2: These instruments are either direct or synthetic linear investments for
which at least two years of daily prices are available. (When prices are
quoted less than daily, the time series has to be longer.) An example would
be a synthetic exchange-traded fund based on DAX or the S&P500 index.

Category 3: These instruments are nonlinear investments, again with a time series of
prices as with Category 2 instruments. Examples are many structured
financial instruments, e.g., a floater with caps and floors.

Category 4: In these instruments the values depend on factors not observed in the
market. Examples are life insurance instruments.

In this paper, we deal with the Category 3 instruments. The calculation for a Category 3
instrument starts by determining a recommended holding period. In most cases, manu-
facturers recommend holding the instrument until maturity. At the recommended holding
period, a VaR equivalent volatility (VEV) has to be determined to calculate a market risk
indicator (1 is very low risk, 7 is very high risk). Market risk classifications (MRM) are
shown in Table 1. For the market risk indicator, 10,000 different simulations of a market
risk factor (e.g., yield curve) have to be performed. For each of those scenarios, the in-
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Table 1 Market risk classification

Market risk classification VaR equivalent volatility

1 VEV < 0.5%
2 0.50% ≤ VEV < 5.00%
3 5.00% ≤ VEV < 12.0%
4 12.0% ≤ VEV < 20.0%
5 20.0% ≤ VEV < 30.0%
6 30.0% ≤ VEV < 80.0%
7 VEV > 80.0%

strument has to be valuated. From the distribution of the resulting values, the VaR can be
calculated. The VaR shall be the value of the PRIIP at a confidence level of 97.5% at the
end of the recommended holding period discounted to the present date using the expected
risk-free discount factor (DF) from the present date to the end of the recommended hold-
ing period. Let P97.5 be the value of the PRIIP at a confidence level of 97.5% at the end of
the recommended holding period. Furthermore, we calculate VaRprice space by multiplying
P97.5 by the discount factor

DF = exp
(
r(t0, tk)(tk – t0)

)
,

where r(t0, tk) is the yield at the tenor point tk , t0 is today and tk is the maturity, i.e., the
recommended holding period T . If the PRIIP prices are log-normal, then the distribution
of its logarithm can be given asN (–VEV2/2)T , VEV2T). Using this lognormal assumption,
the 97.5 percentile of VaR in price space would be

VaRprice space = exp

(
–

T
2

VEV2 + zα=0.025VEV
√

T
)

,

ln(VaRprice space) = –
T
2

VEV2 – 1.96 × VEV
√

T ,

VEV2 · T + 3.92 × VEV
√

T + 2 × ln(VaRprice space) = 0,

where zα=0.025 = –1.96. We solve this quadratic equation for VEV

VEV =
–3.92

√
T ± √

(3.92)2T – 8T × ln(VaRprice space)
2T

=
–1.96 ± √

3.842 – 2 × ln(VaRprice space)√
T

,

and consider only the positive value

VEV =
√

(3.842 – 2 × ln(VaRprice space)) – 1.96√
T

.

Then the instrument is simulated for 10,000 different market scenarios, and the 10,000
values are sorted into favorable, moderate, and unfavorable performance scenarios, which
are the values at 90th, 50th, and 10th percentile, respectively. If the recommended hold-
ing period is less than one year, then the performance scenarios are calculated only at the
RHP. However, if the recommended holding period is longer than one year, then the per-
formance scenarios at the intermediate holding periods (1 year, RHP/2, RHP) have to be
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Figure 1 The calculation steps for category three instruments

calculated. To be consistent with Category 2 instruments, the measure used after the valu-
ation date is the risk-free measure and it is the physical measure before. Flowchart 1 shows
the calculation steps for Category 3 instruments. For more details, see the joint committee
of the European Supervisory Authorities flowcharts for the risk and reward calculations
in the PRIIPs KID [35].

The calibration of the financial model generates a high dimensional parameter space
which can be computationally costly, when no analytic solutions are available, e.g., in the
case of the Black Karasinski model. Since we need to valuate the financial instrument for
such a high dimensional parameter space, we establish a parametric model order reduc-
tion approach.

3 The mathematical model
The management of interest rate risks, i.e., the control of change in future cash flows due to
the fluctuations in interest rates is of great importance. Especially, the pricing of products
based on the stochastic nature of the interest rate creates the necessity for mathematical
models for an underlying financial instrument. In Appendix A we describe the derivation
of such a model and consider in particular the Hull–White model [32, 36] which is given
by the convection-diffusion-reaction type partial differential equation (PDE) [37] of the
form

∂V
∂t

+
(
a(t) – b(t)r(t)

)∂V
∂r︸ ︷︷ ︸

convection

+
1
2
σ (t)2 ∂2V

∂r2
︸ ︷︷ ︸

diffusion

– r(t)V︸ ︷︷ ︸
reaction

= 0, (1)
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where V is an interest rate instrument with maturity T and r(t) is the short rate satisfying
a stochastic differential equation (SDE)

dr(t) =
(
a(t) – b(t)r(t)

)
dt + σ (t) dW (t),

with time-dependent parameters a(t), b(t), and σ (t) and white noise W (t). We solve this
SDE for an underlying instrument V by converting it into the PDE defined by (1). The de-
tailed derivation of the PDE is given in Appendix A. The regulation does not prescribe how
to obtain b(t) and σ (t); thus, considering them constants should lead to more robust re-
sults than time-dependent parameters, see also [38], so in our approach we consider the re-
sulting robust Hull–White model with constant b(t) = b and σ (t) = σ and time-dependent
parameter a(t) for yield curve simulation and parameter calibration, which determine the
average direction in which the short-rate r(t) moves. Our results can, however, be ex-
tended to the more general case. According to the PRIIPs regulation, for this we have to
perform at least s = 10,000 yield curve simulations. We construct a simulated yield curve
matrix (15)

Y =

⎡

⎢
⎢
⎣

y11 · · · y1m
...

...
...

ys1 · · · ysm

⎤

⎥
⎥
⎦ ∈R

s×m,

which is then used to calibrate the parameter a(t). We obtain s different piecewise constant
parameters a�(t), which change their values α�,i only at the m tenor points. We incorporate
these in a matrix (19)

A =

⎡

⎢
⎢
⎣

α11 · · · α1m
...

...
...

αs1 · · · αsm

⎤

⎥
⎥
⎦ .

Appendix B presents a detailed procedure for the yield curve simulation and the calibra-
tion of a(t) based on simulated yield curves is described in Appendix C.

To solve (1) numerically, we apply an upwind scheme for the convection term [39], and
a standard second order finite difference scheme for the diffusion term, combined with
a trapezoidal rule [40] for the time discretization, for more details see the technical re-
port [34] and Appendix D. This discretization is a parametric high dimensional model of
the form

A
(
ρ�(t)

)
V n–1 = B

(
ρ�(t)

)
V n, (2)

with a given terminal vector, and matrices A(ρ�) ∈ R
M×M , and B(ρ�) ∈ R

M×M . We call
this the full model for the model reduction procedure in the next section. We solve (2)
by propagating backward in time. Here again � = 1, . . . , s = 10,000, m is the total number
of tenor points, and we need to solve this system at each time step n with an appropriate
boundary condition and a known terminal value for the underlying instrument. Altogether
we have a parameter space P of size 10,000 × m to which we now apply model reduction.
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4 Parametric model order reduction
To perform the parametric model reduction for system (2), we employ Galerkin projection
onto a low dimensional subspace via

V̄ n = QV n
d , (3)

where the columns of Q ∈ R
M×d represent the reduced-order basis with d � M, V n

d is a
vector of reduced coordinates, and V̄ n ∈ R

M is the solution in the nth time step obtained
using the reduced order model. For the Galerkin projection we require that the residual
of the reduced state

pn(V n
d ,ρ�

)
= A(ρ�)QV n–1

d – B(ρ�)QV n
d

is orthogonal to the reduced basis matrix Q, i.e.,

QT pn(V n
d ,ρ�

)
= 0, (4)

so that by multiplying pn(V n
d ,ρ�) with QT , we get

QT A(ρ�)QV n–1
d = QT B(ρ�)QV n

d ,

Ad(ρ�)V n–1
d = Bd(ρ�)V n

d ,
(5)

where Ad(ρ�) ∈ R
d×d and Bd(ρ�) ∈R

d×d are the parameter dependent reduced matrices.
We obtain the Galerkin projection matrix Q in (3) based on a proper orthogonal de-

composition (POD) approach, which generates an optimal order orthonormal basis Q in
the least square sense that is independent of the parameter space P and we do this by the
method of snapshots. The snapshots are nothing but the state solutions obtained by sim-
ulating the full model for selected parameter groups. We assume that we have a training
set of parameter groups ρ1, . . . ,ρk ∈ [ρ1,ρs]. We compute the solutions of the full model
for this training set and combine them in a snapshot matrix V̂ = [V (ρ1), V (ρ2), . . . , V (ρk)].
The POD method computes

POD(V̂ ) := argmin
Q

1
k

k∑

i=1

∥∥Vi – QQT Vi
∥∥2,

for an orthogonal matrix Q ∈ R
M×d via a truncated SVD, see [41],

V̂ = ��	T =
k∑

i=1

�iφiψ
T
i ,

where φi and ψi are the left and right singular vectors of the matrix V̂ respectively, and
�i are the singular values. The truncated SVD computes only the first k columns of the
matrix �. The optimal projection subspace Q then consists of d left singular vectors φi

known as POD modes. The dimension d of the subspace Q is chosen such that we get
a good approximation of the snapshot matrix. According to [22], large singular values
correspond to the main characteristics of the system, while small singular values give only
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Algorithm 1 Parametric POD
Input: Parameter groups ρs = {a(t), b, σ }, energy level EL, number of samples k.
Output: Projection matrix Q.

Choose sample parameter groups ρ1, . . . ,ρk .
FOR i = 1 to k.

Solve the full order model for the parameter group ρi and determine V (ρi).
END
Construct snapshot matrix V̂ = [V (ρ1), . . . , V (ρk)].
Compute leading singular values and vectors of V̂ using truncated SVD V̂ = ��	T .
Set � = diag(�)/ sum(diag(�)).
FOR j = 1 to length(�).

�̄ = sum(�(1 : j)) × 100.
IF �̄ > EL then set d = j.

END
Q = [φ1 · · ·φd].

small perturbations of the overall dynamics. The relative importance of the ith POD mode
of the matrix V̂ is determined by the relative energy �i of that mode

�i =
�i

∑k
i=1 �i

. (6)

If the sum of the energies of the generated modes is 1, then these modes can be used to
reconstruct a snapshot matrix completely [42]. In general, the number of modes required
to generate the complete data set is significantly less than the total number of POD modes
[43]. Thus, a matrix V̂ can be accurately approximated by using POD modes whose cor-
responding energies sum to almost all of the total energy. Thus, we choose only d out of
k POD modes to construct Q = [φ1 · · ·φd] which is a parameter independent projection
space based on (6).

We summarize the procedure in Algorithm 1, where we denote by V (ρi) the solution of
the full model for a parameter set ρi, by V̂ the snapshot matrix, by � (	) the matrix of left
(right) singular vectors, associated with the diagonal matrix of singular values �, and by
�j the relative energy of the jth POD mode.

It is evident that the quality of the reduced model strongly depends on the selection of
parameter groups ρ1, . . . ,ρk that are used to compute the snapshots. Hence it is essential
to introduce an efficient sampling technique for the parameter space. We could consider
standard sampling techniques, like uniform sampling or random sampling [44]. However,
these techniques may neglect vital regions within the parameter space. As an alternative, a
greedy sampling method has been suggested in the framework of model order reduction,
see [26–28].

4.1 Greedy sampling method
The greedy sampling technique selects the parameter groups at which the error between
the reduced model and the full model is maximal. We compute the snapshots using these
parameter groups in such a way that we obtain an optimal reduced basis Q. Let ‖e‖ = ‖V –V̄‖

‖V‖
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Algorithm 2 Classical greedy sampling
Input: Maximum number of iterations Imax, maximum number of parameter groups c,
parameter space P , tolerance εtol.
Output: Galerkin projection matrix Q.

Choose first parameter group ρ1 = [(a11, . . . , a1m), b,σ ] from P .
Solve the full order model for the parameter group ρ1 and store the results in V1.
Compute a truncated SVD of the matrix V1 and construct Q1.
Randomly select a set of c parameter groups P̂ = {ρ1,ρ2, . . . ,ρc} ⊂P .
FOR i = 2 to Imax

FOR j = 1 to c
Compute a reduced model for parameter group ρj with reduced basis Qi–1.
Compute the error estimator ε(ρj).

END
Compute ρI = argmax

ρ∈P̂ ε(ρ).
IF ε(ρI) ≤ εtol, then Q = Qi–1, STOP.
Simulate the full model for the parameter group ρI and store the result in Vi.
Construct a snapshot matrix V̂ by concatenating the solutions V� for � = 1, . . . , i.
Compute a truncated SVD of the matrix V̂ and construct Qi.

END

be the relative error between the reduced and full model and set

ρI = argmax
ρ∈P

‖e‖.

At each greedy iteration i = 1, . . . , Imax, the greedy sampling algorithm selects the optimal
parameter group ρI that maximizes the relative error ‖e‖. However, the computation of
the relative error ‖e‖ is computationally costly as it entails the solution of the full model.
Thus, usually, the relative error is replaced by error bounds or the residual ‖p‖. However,
in some cases, it is not possible to obtain error bounds, see [28–30]. Let ε be the error
estimator, i.e., in our case the norm of the residual. At each iteration i = 1, . . . , Imax, the
classical greedy sampling algorithm chooses the parameter group as the maximizer

ρI = argmax
ρ∈P

ε(ρ). (7)

The algorithm is initiated by selecting a parameter group ρ1 from the parameter set P
and computing a reduced basis Q1 as in Sect. 4. Choosing a pre-defined parameter set
P̂ of cardinality c randomly from the set P , at each point of P̂ the algorithm determines
a reduced order model with reduced basis Q1 and then computes error estimator values,
ε(ρj)c

j=1. The parameter group in P̂ at which the error estimator is maximal is then selected
as the optimal parameter group ρI . Then the full order model is simulated for this param-
eter group and the snapshot matrix V̂ is updated. Finally, a new reduced basis is obtained
by computing a truncated singular value decomposition of the updated snapshot matrix,
as in Algorithm 1. These steps are then repeated for Imax iterations or until the maximal
value of the error estimator is lower than the specified tolerance εtol. The procedure for
the classical greedy approach is summarized in Algorithm 2.
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The classical greedy sampling method computes an inexpensive a posteriori error esti-
mator for the reduced model. However, it is not feasible to calculate the error estimator
values for the entire parameter space P . To address this, the classical greedy sampling
technique chooses the pre-defined parameter set P̂ randomly as a subset of P . Random
sampling is designed to represent the whole parameter space P , but there is no guarantee
that P̂ will reflect the complete space P , since the random selection may neglect param-
eter groups corresponding to the most significant error. These observations motivate us
to design a new criterion for the selection of the subset P̂ .

Another drawback of the classical greedy sampling technique is that we have to specify
the maximum error estimator tolerance εtol. The error estimator usually depends on some
error bound, which may not be tight or may not exist. To overcome this drawback, follow-
ing ideas in [28], we establish a strategy to construct a surrogate model for the error as a
function of the error estimator and we use this error model to control the convergence of
the greedy sampling algorithm.

4.2 Adaptive greedy sampling method
To overcome drawbacks of the classical greedy sampling approach, we implemented the
adaptive sampling approach which selects the parameter groups adaptively at each itera-
tion of the greedy procedure, using an optimized search based on surrogate modeling. We
construct a surrogate model ε̄ of the error estimator to approximate the error estimator
ε over the entire parameter space. Further, we use this surrogate model to select the pa-
rameter groups P̂k = {ρ1, . . . ,ρck } with ck < c, where the values of the error estimator are
highest. For each parameter group within the parameter set P̂k , we determine a reduced
model and compute the values of the error estimator. Then the process repeats itself until
the total number of parameter groups reaches c, resulting in the desired parameter set P̂ .

The first stage of the adaptive greedy sampling algorithm computes the error estimator
over a randomly selected parameter set P̂0 of cardinality c0. The algorithm uses these error
estimator values {εi}c0

i=1 to build a surrogate model ε̄0 and locates the ck parameter groups
corresponding to the ck maximal values of the surrogate model. This process repeats itself
for k = 1, . . . , K iterations until the total number of parameter groups reaches c. Finally,
the optimal parameter group ρI is the one that maximizes the error estimator within the
parameter set

P̂ = P̂0 ∪ P̂1 ∪ P̂2 ∪ · · · ∪ P̂K .

Thus, at the kth iteration, a surrogate model ε̄k is constructed that approximates the error
estimator over the entire parameter space P . There are different choices to build a sur-
rogate model [44]. In this paper, we use the principal component regression (PCR) tech-
nique. Suppose ε̂ = (ε1, . . . , εck ) ∈ R

ck×1 is the vector of error estimator values at the kth
iteration. Since the parameters b and σ are assumed constant, we build a surrogate model
with the parameter a(t) only. Let P̂k = [ρ1, . . . ,ρck ] ∈ R

ck×m be the matrix composed of ck

parameter groups at the kth iteration. The rows of the matrix P̂k represent ck parameter
vectors, while the m columns represent m tenor points for the parameter vector a(t). We
can fit a simple multiple regression model as

ε̂ = P̂k · η + err, (8)
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where η = [η1, . . . ,ηm] is an array containing regression coefficients and err is an array of
residuals. The least square estimate of η is obtained as

η̂ = argmin
η

‖ε̂ – P̂k · η‖2
2 = argmin

η

∥
∥∥
∥∥
ε̂ –

m∑

i=1

ρiηi

∥
∥∥
∥∥

2

2

.

If ck is not much larger than m, then the model may give weak predictions due to the
risk of over-fitting for the parameter groups which are not used in model training. Also,
if ck is smaller than m, then the least square approach cannot produce a unique solution,
restricting the use of the simple linear regression model. We may face this problem during
the first few iterations of the adaptive greedy sampling algorithm, as we will have few error
estimator values to build a reasonably accurate model.

The principal component regression (PCR) technique is a dimension reduction tech-
nique in which m explanatory variables are replaced by p linearly uncorrelated variables
called principal components. The dimension reduction is achieved by considering only
a few relevant principal components. The PCR approach helps to reduce the problem of
estimating m coefficients to the more simpler problem of determining p coefficients. In
the following, we describe the method to construct a surrogate model at the kth iteration
in detail.

Before performing a principal component analysis (PCA), we center both the response
vector ε̂ and the data matrix P̂k . The PCR starts by performing a PCA of the matrix P̂k .
For this, we compute an SVD

P̂k = �̂�̂	̂ ,

and then the principal components are the columns of the matrix P̂k	̂ . For dimension
reduction, we select only p columns of the matrix 	̂ to construct a fairly accurate reduced
model. In [45] it is suggested that the first three or four principal components are enough
to analyze the yield curve changes. Let Z = P̂k	̂p = [P̂kψ̂1, . . . , P̂kψ̂p] be the matrix con-
taining the first p principal components. We regress ε̂ on these principal components via

ε̂ = Z� + err,

where � = [ω1, . . . ,ωp] is the vector containing the regression coefficients obtained using
the principal components. The least square estimate for � is given as

�̂ = argmin
�

‖ε̂ – Z�‖2
2 = argmin

ω

∥∥
∥∥
∥
ε̂ –

p∑

i=1

ziωi

∥∥
∥∥
∥

2

2

.

We obtain the PCR estimate ηPCR ∈R
m of the regression coefficients η as

ηPCR = 	̂p�̂.

Finally, the value of the surrogate model for any parameter vector a� = [a�.1, . . . , a�,m] is

ε̄(ρ�) = η1a�,1 + · · · + ηma�,m.
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Algorithm 3 Surrogate error model using PCR

Input: Vector ε̂ = [ε1, . . . , εck ], P̂k = [ρ1, . . . ,ρck ] ∈ R
ck×m̄, number of principal components

p.
Output: Vector of regression coefficients η.

Standardize P̂k and ε̂ with zero mean and variance one.
Compute the SVD P̂k = �̂�̂	̂ .
Construct the matrix Z = P̂k	̂p = [P̂kψ̂1, . . . , P̂kψ̂p] composed of principal
components.
Compute the least square regression using the principal components as independent
variables: �̂ = argmin� ‖ε̂ – Z�‖2

2.
Compute the PCR estimate ηPCR = 	̂p�̂ of the regression coefficients η.

Algorithm 3 presents this surrogate error model, which we will use in the construction
of an adaptive greedy sampling method.

4.3 Adaptive greedy sampling algorithm
The adaptive greedy sampling algorithm utilizes the designed surrogate model to locate
optimal parameter groups adaptively at each greedy iteration i = 1, . . . , Imax. The first few
steps of the algorithm resemble the classical greedy sampling approach. First the pa-
rameter group ρ1 is selected from the parameter space P and the reduced basis Q1 is
constructed. Furthermore, the algorithm randomly selects c0 parameter groups and con-
structs a temporary parameter set P̂0 = {ρ1, . . . ,ρc0}. For each parameter group in the pa-
rameter set P̂0, the algorithm determines a reduced order model and computes an array
of corresponding residual errors ε0 = {ε(ρ1), . . . , ε(ρc0 )}. Then a surrogate model for the
error estimator ε̄ is constructed based on the estimator values {ε(ρj)}c0

j=1, as discussed in
Sect. 4.2. The obtained surrogate model is then simulated for the entire parameter space
P . Furthermore, we locate ck parameter groups corresponding to the first ck maximal
values of the surrogate model. We then construct a new parameter set P̂k = {ρ1, . . . ,ρk}
composed of these ck parameter groups.

The algorithm determines a reduced model for each parameter group within the pa-
rameter set P̂k and obtains an array of error estimator values εk = {ε(ρ1), . . . , ε(ρck )} for
the parameter set P̂k . Furthermore, we concatenate the set P̂k and the set P̂0 to form a
new parameter set P̂ = P̂k ∪ P̂0. Let esg = ε0 ∪ · · · ∪ εk be the set composed of all the error
estimator values available at the kth iteration. The algorithm then uses this error estima-
tor set esg to build a new surrogate model. The quality of the surrogate model increases
with each iteration as we get more error estimator values. This process is repeated until
the cardinality of the set P̂ reaches c, giving

P̂ = P̂0 ∪ P̂1 ∪ P̂2 ∪ · · · ∪ P̂K .

Finally, the optimal parameter group ρI which maximizes the error estimator (7) is ex-
tracted from the parameter set P̂ . Note that typically it is not necessary to obtain a very
accurate sampling using the designed surrogate model. Sampling the full model in the
neighborhood of the parameter group with maximal error is sufficient to obtain good re-
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Table 2 List of symbols used in Algorithm 4

ρ group of model parameters {a(t),b,σ };
ck number of parameters selected adaptively based on surrogate modeling;
V solution obtained by solving a full order model;
c0 Number of randomly selected parameter groups to initiate the algorithm;
ε error estimator;
εk set comprised of error estimator values at kth iteration;
esg set composed of all error estimator values at the kth iteration;
ε̄ surrogate error model;
P̂ parameter set used to obtain the optimal parameter group;
ρI optimal parameter group which maximizes the error estimator;
e relative error between a reduced and full model;
V̄ solution obtained using a reduced order model;
V̂ snapshot matrix;
Ep error set;
ē error model as an approximate error for the exact error e;
emax

tol tolerance for the relative error, greedy iterations terminates if ē < emax
tol ;

γe slope of the error model;
τ̂ intersection with the logarithmic axis log(y).

sults. To monitor the convergence of the adaptive greedy algorithm, we have designed an
error model ē for the relative error e as a function of the residual error ε.

To build an approximate error model, we simulate one full model at each greedy iteration
for the optimal parameter group ρI , and update the snapshot matrix V̂ . A new reduced
basis Q is then obtained by computing the truncated singular value decomposition of the
updated snapshot matrix as explained in Sect. 4. Furthermore, we solve the reduced model
for the optimal parameter group before and, after updating the reduced basis, obtain the
respective error estimator values εbef (ρI), and εaft(ρI). Then we compute the relative errors
ebef , eaft between the full and reduced model constructed before and after updating the
reduced basis.

In this way, at each greedy iteration, we get a set of error values Ep that we use to con-
struct a linear approximate error model for the exact error e based on the error estimator
ε.

Ep =
{(

ebef
1 , εbef

1
) ∪ (

eaft
1 , εaft

1
)
, . . . ,

(
ebef

i , εbef
i

) ∪ (
eaft

i , εaft
i

)}
, (9)

as

log(ēi) = γi log(ε) + log τ . (10)

Setting Y = log(ē),X = log(ε) and τ̂ = log(τ ) we get

Y = γeX + τ̂ ,

where γe is the slope of the linear model and τ̂ is the intersection with the logarithmic axis
log(y).

After each greedy iteration, we get more data points in the error set Ep, which increases
the accuracy of the error model. In Sect. 5, we illustrate that this linear model is sufficient
to achieve an accurate error model. The adaptive greedy sampling approach is summarized
in Algorithm 4. The list of symbols used in Algorithm 4 is presented in Table 2.
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Algorithm 4 Adaptive greedy sampling algorithm
Input: Maximal number of iterations Imax, maximal number of parameter groups c, num-
ber of adaptive candidates ck , parameter space P , tolerance emax

tol .
Output: Q.

Choose first parameter group ρ1 = [[a11, . . . , a1m], b,σ ] from P .
Simulate the full model for the parameter group ρ1 and store the results in V1.
Compute a truncated SVD of the matrix V1 and construct Q1.
FOR i = 2, . . . , Imax

Randomly select a set of parameter groups P̂0 = {ρ1,ρ2, . . . ,ρc0} ⊂P .
FOR j = 1, . . . , c0

determine a reduced model for parameter group ρj with reduced basis Qi–1.
Compute the error estimator ε(ρj).

END
Let ε0 = {ε(ρ1), . . . , ε(ρc0 )} be error estimators for P̂0.
Let k = 1 and esg = ε0.
WHILE n(P̂) < c

Construct a surrogate model ε̄(ρ) using the values esg.
Compute the values ε̄(ρ) of the surrogate model over P .
Determine first ck maximal values of ε̄(ρ) and parameter set P̂k =
{ρ1, . . . ,ρck }.
For x = 1, . . . , n(P̂k)

determine a reduced model for parameter group ρx.
Compute the error estimator ε(ρx).

END
Let εk = {ε(ρ1), . . . , ε(ρck )} be the error estimators for P̂k .
Update esg = {ε0 ∪ · · · ∪ εk}.
Construct new parameter set P̂ = P̂0 ∪ P̂k .
k = k + 1.

END
Find ρI = argmax

ρ∈P̂ ε(ρ).
IF i > 2 and ēi ≤ emax

tol , set Q = Qi–1, STOP.
Solve the full model for the parameter group ρI and store result in Vi.
Solve reduced model for the parameter group ρI using Qi–1 and store result in V̄i.
Compute relative error ebef

i and error estimator εbef
i using the reduced model

obtained with Qi–1, before updating reduced basis. Set
ebef

i = ‖Vi(ρI) – V̄i(ρI)‖/‖Vi(ρI)‖.
Construct a snapshot matrix V̂ by concatenating the solutions V� for � = 1, . . . , i.
Compute an SVD of the matrix V̂ and construct Qi.
Simulate reduced model for parameter group ρI using Qi and store result in V̄i+1.
Compute relative error eaft

i and error estimator εaft
i using the reduced model

obtained with Qi, after updating the reduced basis. Set
eaft

i = ‖Vi(ρI) – V̄i+1(ρI)‖/‖Vi(ρI)‖.
Construct error set Ep = {(ebef

1 , εbef
1 ) ∪ (eaft

1 , εaft
1 ), . . . , (ebef

i , εbef
i ) ∪ (eaft

i , εaft
i )}.

Construct model for error ē using error set Ep: log(ēi) = γi log(ε) + log τ .
END
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Table 3 Numerical Example of a floater with cap and floor

Coupon frequency quarterly
Cap rate, CR 2.25 % p.a.
Floor rate, FR 0.5 % p.a.
Currency EURO
Maturity 10 years
Nominal amount 1.0
b 0.015
σ 0.006

5 Numerical example
A numerical example of a floater with cap and floor [33] is used to test the developed
algorithms and methods. We model the floater instrument using the Hull–White model
and compare the results of the PDE model by discretizing as in Sect. D with the results of
the reduced model. The reduced model is generated by implementing the POD method
along with the classical and the adaptive greedy sampling techniques. The characteristics
of the floater instrument are as shown in Table 3. The interest rates are capped at CR =
2.25% p.a. and floored at CF = 0.5% p.a. with the reference rate as Euribor3M. The coupon
rates can be written as

coup = min
(
2.25%, max(0.5%, Euribor3M)

)
. (11)

Note that the coupon rate coup(n) at time tn is set in advance as the coupon rate at tn–1. All
computations are carried out on a PC with 4 cores and 8 logical processors at 2.90 GHz
(Intel i7 7th generation). We used MATLAB R2018a for the yield curve simulations and
the model reduction. The numerical method for the yield curve simulations is tested with
real market based historical data. Market data are available from market data providers
like Thomson Reuters, Bloomberg, and several others. We obtained this data from Math-
Consult within their UnRisk Omega datasets [46]. The daily interest rate data are collected
at 21 tenor points in time over the past 5 years, where each year has 260 working days, so
there are 1300 observation periods. We have used the inbuilt UnRisk tool for the param-
eter calibration, which is well integrated with Mathematica (version used: Mathematica
11.3). Further, we used calibrated parameters for the construction of a Hull–White model.

We have computed the model parameters as explained in Appendix C. The yield curve
simulation is the first step to compute the model parameters. Based on the procedure
described in Appendix B, we have performed the bootstrapping process for the recom-
mended holding period of 10 years, i.e., for the maturity of the floater. The collected histor-
ical data has 21 tenor points and 1306 observation periods as follows (D: Day, M: Month,
Y: Year):

m =: {1D, 3M, 6M, 1Y , 2Y , 3Y , . . . , 10Y , 12Y , 15Y , 20Y , 25Y , 30Y , 40Y , 50Y },
n =: {1306 daily interest rates at each tenor point}.

The 10,000 simulated yield curves in 10 years in the future are presented in Fig. 2. For
the floater example, we need parameter values only until the 10Y tenor point (maturity
of the floater). Henceforth, we consider the simulated yield curves with only the first 13
tenor points. The calibration generates the real parameter space of dimension R

10,000×13

for the parameter a(t). We considered the constant volatility σ = 0.006 and the constant
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Figure 2 10,000 simulated yield curves obtained by bootstrapping for next 10 years

Figure 3 10,000 parameter vectors a(t) as a piecewise function of time

mean reversion b = 0.015. All variable parameters are assumed to be piecewise constants
between the tenor points (0 – 3M, 3M – 6M, 6M – 1Y , 1Y – 2Y , 2Y – 3Y , . . . , 9Y – 10Y ).
Figure 3 shows 10,000 different piecewise constant parameters a(t). The computational
domain for a spatial dimension r is restricted as described in Sect. D. Here, rlow = –0.1
and rup = 0.1. We applied homogeneous Neumann boundary conditions of the form

∂V
∂r

∣
∣∣
∣
rlow

= 0,
∂V
∂r

∣
∣∣
∣
rup

= 0. (12)

We divided the spatial domain into M = 600 equidistant grid points {r(1), r(2), . . . , r(M)}
and used the N time points (measured in days) starting from t = 0 until maturity T , i.e., in
our case, the number of days until maturity are assumed to be 3600 ≈ 10Y with an interval
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Figure 4 Evolution of maximal and average residuals in each iteration of classical greedy algorithm

τ = 1. Rewriting (2), for given final value of V at the last tenor point, we obtain

A
(
ρ�(t)

)
V n–1 = B

(
ρ�(t)

)
V n.

We can apply the first boundary condition in (12) by updating the first and the last rows
(A1 and AM) of the matrix A(ρ�) which yields

A1 = (–1, 1, 0, . . . , 0) and AM = (0, . . . , 0, 1, –1).

The second Neumann boundary condition can be applied by changing the last entry of
the vector BV n to zero. Starting at t = T with the known terminal condition V (T) as the
principal amount, at each time step, we solve the system of linear equations (2).

Note that we need to update the value of the grid point r(i) every three months as the
coupon frequency is quarterly by adding coupon f n based on the coupon rate given by
(11). To calculate the value at the intermediate holding period, we calculate the fair value
of the floater and add it to the accreted coupons.

We have implemented the parametric model reduction approach for the floater exam-
ple, as discussed in Sect. 4 using both the classical and the adaptive greedy sampling algo-
rithms.

At each iteration of the classical greedy sampling approach, the algorithm constructs a
reduced basis via Algorithm 1. We have specified a maximum number of 40 pre-defined
candidates to construct a set P̂ and a maximum number of iterations Imax = 10. The pro-
gression of the maximal and average residuals with each iteration of the greedy algorithm
is presented in Fig. 4. It is observed that the maximal residual error typically decreases in
the process and the proposed greedy algorithm efficiently locates the optimal parameter
groups and constructs the desired reduced basis Q. Furthermore, we tested the effect of
change in the cardinalities of the set P̂ . The proposed algorithm is applied with three dif-
ferent cardinalities of P̂ : |P̂1| = 20, |P̂2| = 30, |P̂3| = 40. Note that we have constructed P̂
by randomly selecting the parameter groups from the parameter space P . Figure 5 shows
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Figure 5 Evolution of the maximum residual error for three different cardinalities of set P̂

Figure 6 Relative error between full and reduced model for two different parameter groups

the plot of the maximal residual against the number of iterations for three different cardi-
nalities.

It is evident that with an increasing number of candidates, the maximal residual error
decreases and the decrease is sufficient for a cardinality 20 of P̂ . Figure 6 illustrates the
relative error between the full model and the reduced-order model for two different pa-
rameter groups. During our tests we noticed that there are some parameter groups (e.g.,
ρ238) for which the reduced model gives unsatisfactory results.

One can observe that the reduced model for the parameter group ρ238 (dashed line)
shows inferior results as compared to the reduced model for the parameter group ρ786

(solid line). Even an increase in the reduced dimension d does not improve the quality of
the result substantially.
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Figure 7 Maximal and average residuals per iteration of adaptive greedy algorithm

This reveals that the selection of trial candidates by random sampling may neglect pa-
rameter groups corresponding to the significant error.

To overcome this drawback, we have also implemented the adaptive greedy sampling
approach for the floater example. At each greedy iteration, the algorithm locates ck = 10
parameter groups adaptively using the surrogate modeling technique, as described in
Sect. 4.2. We have fixed the maximum number of elements within the parameter set P̂
to 40. Furthermore, the adaptively obtained parameter set P̂ has been used to locate the
optimal parameter group ρI . These steps are repeated for a maximum of Imax = 10 itera-
tions or until convergence. The algorithm has been initiated by selecting c0 = 20 random
parameter groups.

The optimal parameter group updates the snapshot matrix, and consecutively the algo-
rithm generates a new reduced basis at each greedy iteration. Figure 7 shows the evolution
of maximum and average residual errors with each iteration of the adaptive greedy algo-
rithm.

The residual error decreases with each incrementing iteration and hence the algorithm
succeeded in locating the optimal parameter group efficiently. To monitor the convergence
of the adaptive greedy algorithm, we have designed an error model ē for the relative error
e as a function of the residual error ε. Figure 8 shows the designed error model compared
to the available error set Ep for four different greedy iterations. The error plot exhibits a
strong correlation between the relative error and the residual error. The results indicate
that a linear error model is satisfactory to capture the overall behavior of the exact error
as a function of the residual error. We have used the reduced basis obtained from the
adaptive greedy sampling procedure to design the reduced model. Figure 9 presents the
relative error plot for the parameter groups ρ238, and ρ786. We see that the adaptive greedy
approach gives better results than the classical greedy method. With a reduced dimension
of d = 6, we obtained an excellent result as the relative error is less than 10–3.
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Figure 8 Error model ē based on error set Ep for four different greedy iterations

Figure 9 Comparison of classical (CG) and adaptive (AG) greedy sampling approach

5.1 Computational cost
In the case of the classical greedy sampling approach, the algorithm solves c reduced mod-
els and one full model at each greedy iteration. It also computes a truncated SVD of the
updated snapshot matrix with each proceeding iteration. Let tRM be the time required to
solve one reduced model, tFM the computational time required for one full model, and tSVD

the time required to obtain a truncated SVD of the snapshot matrix. The total computa-
tional time TCG

Q required to obtain the reduced basis after i steps of the greedy algorithm
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Table 4 Computing time/reduction time (TQ) to generate projection subspace

Algorithm Cardinality |P̂| Max. no. iterations Imax Computing time

Classical greedy sampling 20 10 56.82 s
Classical greedy sampling 30 10 82.54 s
Classical greedy sampling 40 10 95.04 s
Adaptive greedy sampling 40 10 183.21 s

Table 5 Evaluation time

Algorithm Model Eva. time single ρs Total Eva. time (Teva) Total time TQ + Teva

FM,M = 600 0.2193 s 2193.72 s 2193.72 s

Classical greedy sampling RM, d = 5 0.0102 s 102.56 s 197.60 s
Classical greedy sampling RM, d = 10 0.0125 s 125.48 s 220.52 s
Adaptive greedy sampling RM, d = 6 0.0104 s 104.38 s 287.59 s
Adaptive greedy sampling RM, d = 10 0.0124 s 124.32 s 307.53 s

in the case of the classical greedy sampling approach can be given as

TCG
Q ≈ [

c × tRM + (tFM + tSVD)
] × i.

Similarly, in the case of the adaptive greedy approach, the total computational time TAG
Q

can be given as

TAG
Q ≈ [

c0 × tRM + k
(
Ck × tRM + tSM + tev

SM
)

︸ ︷︷ ︸
tρI

+tFM + tSVD + 2taf ,bf
RM + tEM

] × i,

where tSM and tev
SM denote the computational times required to build and evaluate a surro-

gate model for the entire parameter space respectively. tEM is the time required to build an
error model. The term 2taft,bef

RM shows the computational time needed to solve the reduced
model after and before updating the reduced basis.

Table 4 compares the computating times required to generate the reduced basis Q for
different sets of P̂ in case of the classical greedy sampling approach with that needed to
obtain the reduced basis in case of the adaptive greedy sampling approach. The comput-
ing time tρI required to locate the optimal parameter group by constructing a surrogate
model for one greedy iteration is approximately 8 seconds. tρI is nothing but the time
required to complete a while loop outlined in Algorithm 4 for a single greedy iteration.
Thus, the total time contributed to generate the reduced basis via surrogate modeling
is Imax × tρI = 78.56s, considering the adaptive greedy algorithm runs for Imax iterations.
Figure 8 shows that we can truncate the algorithm after 4 or 5 iterations as the residual
error falls below 10–4. The computing times required to simulate reduced models and full
models are presented in Table 5. The time required to solve the complete system with a
parameter space of 10,000 × m for both a full and reduced model is given in the total time
column.

We can see that the evaluation time required for the reduced model is at least 18–20
times less than that of the full model. However, there is a slight increase in total time due
to the addition of the reduction time TQ. One can also observe that with an increase in
the dimension d of the reduced model, the evaluation time increases significantly. The
reduced model with the classical greedy sampling approach is at least 10–11 times faster
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than that for the full model. The time required to simulate the reduced model with the
adaptive greedy sampling approach is a bit higher due to the time invested in building sur-
rogate and error models. Despite of that, the reduced model is at least 8–9 times faster than
the full model. The computational time presented in both tables considers that the greedy
algorithms run for the maximal number of iterations Imax. However, we can truncate the
algorithms after 4 or 5 iterations, i.e., we can practically achieve even more speedup than
discussed here.

5.2 Floater performance scenario values
To design a key information document, we need the values of the floater at different spot
rates. The spot rate rsp is the yield rate at the first tenor point from the simulated yield
curve. The value of a floater at the spot rate rsp is nothing but the value at that short rate
r = rsp. For 10,000 simulated yield curves, we get 10,000 different spot rates and the cor-
responding values for the floater. At the recommended holding period, we determine a
VaR equivalent volatility to calculate a market risk indicator. For the floater example, the
calculated VEV = 0.3989%, which gives the market risk indicator as 1.

The 10.000 values are further used to calculate three different scenarios: (i) favorable
scenario, (ii) moderate scenario, (iii) unfavorable scenario which are the values at 90th per-
centile, 50th percentile and 10th percentile of 10,000 values, respectively. Table 6 shows
the floater performance scenario results obtained using the reduced-order model and the
commercially available UnRisk software for the comparison. Figure 10 shows the distri-
bution of fair values of the floater, plus the coupons in the respective path obtained so
far, after five years and ten years. At five years, the main contribution to price variability
arises from discounting the future cash flows (between five and ten years) with a discount
factor arising from log-normally distributed rates. Therefore we have (in our example) a
left-skewed distribution at five years, and a right-skewed distribution at ten years.

Figure 10 Distribution of floater values after five years and ten years

Table 6 Results for a floater with cap and floor

Performance Scenario 5 years 10 years

Model ROM UnRisk ROM UnRisk

Favorable (90th percentile) 1.013 1.014 1.105 1.101
Moderate (50th percentile) 1.009 1.002 1.067 1.066
Unfavorable (10th percentile) 0.988 0.984 1.038 1.041
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6 Conclusion
This paper presents a parametric model reduction approach for a discretized convection-
diffusion-reaction PDE that arises in the analysis of financial risk. The parameter space
with time-dependent parameters is generated via the calibration of financial models based
on market structures. A finite difference method has been implemented to solve this PDE.
The selection of parameters to obtain the reduced basis is of utmost importance. We have
established a greedy approach for parameter sampling, and we noticed that there are some
parameter groups for which the classical greedy sampling approach gave unsatisfactory re-
sults. To overcome this drawback, we have applied an adaptive greedy sampling method
using a surrogate model for the error estimator that is constructed for the entire parame-
ter space and further used to locate the parameters which most likely maximize the error
estimator. The surrogate model is built using the principal component regression tech-
nique. We tested the designed algorithms for a numerical example of a floater with cap
and floor solved using the Hull–White model. The results indicate the computational ad-
vantage of the parametric model reduction technique for the short-rate models. A reduced
model of dimension d = 6 was enough to reach an accuracy of 0.01%. The reduced model
was at least 10–12 times faster than the full model. The developed model order reduc-
tion approach shows potential applications in the historical or Monte Carlo value at risk
calculations as well, where a large number of simulations need to be performed for the
underlying instrument.

7 Outlook
In this paper, we solved the numerical example of the floater with cap and floor based
on the Hull–White model, and the obtained results show that the model order reduc-
tion approach works well. However, there are more complicated financial instruments
under the Category 3 PRIIPs, e.g., instruments with Bermudan or American callabilities,
callable/puttable steepener, target redemption notes, snowball. The coupons for the steep-
ener instrument depend on the difference between two rates, while in the case of snowball,
a new coupon depends on the old coupon. Thus, to solve such complicated instruments,
we need to consider multi-factor models like the two-factor Hull–White model. These
challenges demand to explore the developed model order reduction algorithms for more
complicated financial models. In the future, we will implement the developed approaches
for financial instruments like steepener, snowball.

Appendix A: Derivation of the model
In this appendix, we derive the model for a risk-less investment with a continuous profit
at a low risk-free rate. We follow the standard derivation in [1]. It is based on the same
principle of constructing a risk-free portfolio as the seminal theory of Black–Scholes.

Let B(t) be the value of a bank account at time t ≥ 0. We assume that the bank account
evolves according to the differential equation

dB(t) = B(t)r(t) dt,
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with initial value B(0) = 1, where r(t) is the short-rate, i.e. the growth rate of the bank
account B within a small time interval (t, t + dt). This leads to the formula

B(t) = exp

(∫ t

0
r(τ ) dτ

)
.

When working with interest-rate products, the study of the variability of interest rates is
essential. Therefore, the short-rate is modelled as a stochastic process. Let S be the price
of stock at the end of the nth trading day. The daily return from days n to n + 1 is given by
(Sn+1 – Sn)/Sn. In general, it is common to work with log returns, since the log return of k
days can be easily computed by adding up the daily log returns,

log(Sk/S0) = log(S1/S0) + · · · + log(Sk/Sk–1).

Based on the assumption that the log returns over disjoint time intervals are stochastically
independent and equally distributed, the central limit theorem [47] implies that the log
returns are normally distributed [48]. These properties [49] can be realized by a standard
Brownian motion W (t), i.e., a family of random variables W (t), indexed by t ≥ 0, with the
properties

• W (0) = 0.
• With probability 1, the function W (t) is continuous in t.
• For t ≥ 0, the increment W (t + τ ) – W (τ ) is normally distributed with mean 0 and

variance t, i.e.,

W (t + τ ) – W (τ ) ∼ N(0, t).

• For all N and times t0 < t1 < · · · < tN–1 < tN , the increments W (tj) – W (tj–1) are
stochastically independent.

These properties lead to the Langevin equation, see [50], which is a stochastic differential
equation

dX(t)
dt

= q(t)X(t),

with initial condition X(0) = X0 with probability 1, where the stochastic parameter q(t) is
given, see [51], by

q(t) = f
(
r(t), t

)
+ h

(
r(t), t

)
w(t).

Here w(t) is a white noise process, and f , h are given functions of the interest rate r(t). This
leads to

dX(t)
dt

= f
(
r(t), t

)
X(t) + g

(
r(t), t

)
X(t)w(t). (13)

The force w(t) = dW (t)/dt is a fluctuating quantity with Gaussian distribution. Substitut-
ing dW (t) = w(t) dt in (13), we get

dX(t) = f
(
r(t), t

)
X(t) dt + g

(
r(t), t

)
X(t) dW (t)
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and we obtain an SDE for the short-rate r(t) via

dr(t) = f
(
t, r(t)

)
dt + g

(
t, r(t)

)
dW (t).

Based on the Ito lemma [3], we can derive a general PDE for any underlying instrument de-
pending on the short-rate. Consider a risk neutral portfolio �(t) that depends on the short-
rate r(t) and consists of two interest rate instruments V1 and V2 with different maturities
T1 and T2, respectively. Suppose that there are � = ( ∂V1

∂r(t) / ∂V2
∂r(t) ) units of the instrument V2.

For an infinitesimal time interval, the value change of the portfolio is d�(t) = �dV2 – dV1.
To avoid the arbitrage, we consider a risk-free rate [1], which gives

d�(t) = �dV2 + (V1 – �V2)r(t) dt – dV1,

and obtain the PDE

d�(t) = (V1 – �V2)r(t) dt

–
[(

∂V1

∂r(t)
f
(
r(t), t

)
+

∂V1

∂t
+

1
2

∂2V1

∂r2
t

g2(r(t), t
))

dt +
∂V1

∂r(t)
g
(
r(t), t

)
dW (t)

]

+ �

[(
∂V2

∂r(t)
f
(
r(t), t

)
+

∂V2

∂t
+

1
2

∂2V2

∂r2
t

g2(r(t), t
)
)

dt +
∂V2

∂r(t)
g
(
r(t), t

)
dW (t)

]
.

Assuming a zero net investment requirement, i.e., d�(t) = 0, we obtain

0 =
[

V1 –
(

∂V1

∂r(t)
/
∂V2

∂r(t)

)
V2

]
r(t) dt

–
[(

∂V1

∂r(t)
f
(
r(t), t

)
+

∂V1

∂t
+

1
2

∂2V1

∂r2
t

g2(r(t), t
))

dt +
∂V1

∂r(t)
g
(
r(t), t

)
dW (t)

]

+
(

∂V1

∂r(t)
/
∂V2

∂r(t)

)[(
∂V2

∂r(t)
f
(
r(t), t

)
+

∂V2

∂t
+

1
2

∂2V2

∂r2
t

g2(r(t), t
)
)

dt

+
∂V2

∂r(t)
g
(
r(t), t

)
dW (t)

]
.

Eliminating the stochastic term, we obtain

[
V1 –

(
∂V1

∂r(t)
/
∂V2

∂r(t)

)
V2

]
r(t) dt

=
[

∂V1

∂t
+

1
2

∂2V1

∂r2
t

g2(r(t), t
)

–
(

∂V1

∂r(t)
/
∂V2

∂r(t)

)(
∂V2

∂t
+

1
2

∂2V2

∂r2
t

g2(r(t), t
))]

dt.

Rearranging the terms,we get

∂V1
∂t + 1

2
∂2V1
∂r2 g2(r(t), t) – rV1

∂V1
∂r(t)

=
∂V2
∂t + 1

2
∂2V2
∂r(t)2 g2(r(t), t) – r(t)V2

∂V2
∂r(t)

=: u
(
r(t), t

)
,

and we obtain a PDE for the financial instrument V1 depending on r(t) given by

∂V1

∂t
+

1
2

g2(r(t), t
) ∂2V1

∂r(t)2 – u
(
r(t), t

) ∂V1

∂r(t)
– r(t)V1 = 0.
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There exist several well-known one-factor short-rate models, such as the Vasicek model
[52], the Cox–Ingersoll–Ross model [53], or the Hull–White model [32, 36] which is an
extension of the Vasicek model. The stochastic differential equation in the Hull–White
model is given as

dr(t) =
(
a(t) – b(t)r(t)

)
dt + σ (t) dW (t),

with time-dependent parameters a(t), b(t), and σ (t). The term (a(t) – b(t)r(t)) is a drift
term and a(t) is known as deterministic drift. Setting g(r(t), t) = σ (t), and –u(r(t), t) =
(a(t) – b(t)r(t)).

The Hull–White model is calibrated based on today’s (t0) market data for bond prices
B(t, T). To project the parameters b(t) and σ (t) into the future (t1), one could use either
B(t1, T + (t1 – t0)) or B(t1, T) [14]. In the first case, the shape of parameters remains un-
changed and does not cover seasonalities or expected changes like money market politics,
while in the second case, we lose the information concentrated on the short end. When b
and σ are constants, both approaches deliver the same parameters.

Appendix B: Yield curve simulation
The PRIIP regulation demands to perform yield curve simulations for at least 10,000 times
[6], and that the data set must contain at least 2 years of daily interest rates for an under-
lying instrument, 4 years of weekly interest rates, or 5 years of monthly interest rates. We
construct a data matrix D ∈ R

n×m of the collected historical interest rates data, where
each row of the matrix forms a yield curve, and the column represents the m tenor points,
which are the different contract lengths of an underlying instrument. For example, if we
have collected the daily interest rate data at m ≈ 20 tenor points in time over the past
five years, then since a year has approximately 260 working days, one obtains n ≈ 1306
observation periods.

The regulations demand to take the natural logarithm of the ratio between the interest
rate at each observation period and the interest rate at the preceding period. To ensure
that we can form the natural logarithm, we need that all elements of the data matrix D are
positive which is achieved by adding a correction term. With W the matrix of all ones,
we set D̄ = D + γW , where γ is chosen so that all elements of matrix D̄ are positive. We
are compensating γ shift at the bootstrapping stage by subtracting it from the simulated
rates. Then we calculate the log returns over each period and store them into a new matrix
D̂ = d̂ij ∈R

n×m as

d̂ij =
ln(d̄ij)

ln(d̄i–1,j)
.

We calculate the arithmetic mean μj of each column of the matrix D̂,

μj =
1
n

n∑

i=1

d̂ij,

subtract μj from each element of the corresponding jth column of D̂ and store the ob-
tained results in a matrix ¯̄D with entries ¯̄dij = d̂ij – μj. We then compute the singular value
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decomposition (SVD) [41],

¯̄D = ��	T ,

where � is a diagonal matrix having singular values �i arranged in descending order. The
columns of � are the normalized left singular vectors and the columns of �� are known
as principal components. The colums of 	 are the right singular vectors or principal di-
rections of the covariance matrix C = ¯̄DT ¯̄D.

The relative importance of the ith singular value is determined by the relative energy

�i =
�i∑m
i=1 �i

,

where the total energy is given by
∑m

i=1 �i = 1. We then select the p right singular vectors
corresponding to the maximal p energies and construct a matrix

	̄ =

⎡

⎢⎢
⎣

ψ11 · · · ψ1p
...

...
...

ψm1 · · · ψmp

⎤

⎥⎥
⎦ ,

project the matrix ¯̄D onto the matrix � via

Mp = ¯̄D · 	̄ ∈R
n×p,

and then calculate the matrix of returns MR = Mp	̄
T ∈ R

n×m. The regulations sug-
gest selecting the first three (p = 3) right singular vectors. This process simplifies the
statistical data ¯̄D and transforms m correlated tenor points into p uncorrelated prin-
cipal components, reproducing the same data by simply reducing the total size of the
model.

We then perform bootstrapping, where large numbers of small samples of the same size
are drawn repeatedly from the original data set. According to the PRIIP regulations, for the
yield curve simulation we have to perform a bootstrapping procedure for at least 10,000
times. The standardized KID also has to include the recommended holding period, i.e., the
period between the acquisition of an asset and its sale. The time step in the simulation of
yield curves is typically one observation period. If H is the recommended holding period
in days, e.g., H ≈ 2600 days, then there are H observation periods in the recommended
holding period.

For each such observation period, we select a random row from the matrix MR, i.e.,
altogether H random rows, and construct a matrix [χij] ∈R

H×m from these selected rows.
Then we sum over the selected rows of the columns corresponding to the tenor point j,
i.e.,

χ̄j =
h∑

i=1

χij, j = 1, . . . , m.

In this way, we obtain a row vector χ̄ = [χ̄1χ̄2 · · · χ̄m] ∈R
1×m. The final simulated yield rate

yj at tenor point j is then the rate d̄nj of the last observation period at the corresponding
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tenor point j, multiplied by the exponential of χ̄j, adjusted for any shift γ used to ensure
positive values for all tenor points, and adjusted for the forward rate so that the expected
mean matches current expectations.

The forward rate between time points tk and t� starting from a time point t0 is given as

rk,� =
R(t0, t�)(t� – t0) – R(t0, tk)(tk – t0)

t� – tk
,

where tk and t� are measured in years and R(t0, tk) and R(t0, t�) are the interest rates avail-
able from the data matrix for the time periods (t0, tk) and (t0, t�), respectively. Thus, the
final simulated yield curve between time points tk and t� is given by

y(t�) = d̄k,� exp(χ̄�) – γ + rk,l, � = 1, . . . , m, (14)

and the simulated yield curve from the calculated simulated returns is given by

y = [y1y2 · · · ym].

We then perform the bootstrapping procedure for at least s = 10,000 times and construct
a simulated yield curve matrix

Y =

⎡

⎢
⎢
⎣

y11 · · · y1m
...

...
...

ys1 · · · ysm

⎤

⎥
⎥
⎦ ∈R

s×m, (15)

which is then used to calibrate the parameter a(t).

Appendix C: Parameter calibration
For a zero-coupon bond B(t, T) maturing at time T , based on the Hull–White model, one
obtains a closed-form solution, see [54], as

B(t, T) = exp
{

–r(t)�(t, T) – �(t, T)
}

, (16)

where κ(t) =
∫ t

0 b(s) ds = bt, since b is assumed constant,

�(t, T) =
∫ T

t
e–κ(t) dt,

�(t, T) =
∫ T

t

[
eκ(v)a(v)

(∫ T

v
e–κ(z) dz

)
–

1
2

e2κ(v)σ 2
(∫ T

v
e–κ(z) dz

)2]
dv.

Here we have again used that σ is constant.
To perform the calibration, we use as input data i) the initial value of a(0) at t = 0, ii)

the zero-coupon bond prices, iii) the constant value of the volatility σ of the short-rate
r(t), and iv) the constant value b each for all maturities Tm, 0 ≤ Tm ≤ T , where Tm is the
maturity at the mth tenor point. Then we compute κ(t) from ∂

∂T κ(T) = ∂
∂T

∫ T
0 b(s) ds = b
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and use

∂

∂T
�(0, T) = e–κ(T)

to compute �(t).
Then, for 0 ≤ Tm ≤ T , we get

∂

∂T
�(0, T) =

∫ T

0

[
eκ(v)a(v)e–κ(T) – e2κ(v)σ 2e–κ(T)

(∫ T

v
e–κ(z) dz

)]
dv,

eκ(T) ∂

∂T
�(0, T) =

∫ T

0

[
eκ(v)a(v) – e2κ(v)σ 2

(∫ T

v
e–κ(z) dz

)]
dv,

∂

∂T

[
eκ(T) ∂

∂T
�(0, T)

]
= eκ(T)a(T) –

∫ T

0
e2κ(v)σ 2e–κ(T) dv,

eκ(T)
[

eκ(T) ∂

∂T
�(0, T)

]
= e2κ(T)a(T) –

∫ T

0
e2κ(v)σ 2 dv,

∂

∂T

[
eκ(T)

[
eκ(T) ∂

∂T
�(0, T)

]]
=

∂a(T)
∂T

e2κ(T) + 2a(T)e2κ(T) ∂

∂T
κ(T) – e2κ(T)σ 2,

∂

∂T

[
eκ(T)

[
eκ(T) ∂

∂T
�(0, T)

]]
=

∂a(T)
∂T

e2κ(T) + 2a(T)e2κ(T)b(T) – e2κ(T)σ 2.

The simulated yield y(T) at the tenor point T is then given by

y(T) = – ln B(0, T), (17)

and from (17) we obtain �(0, T) = [y(T)–r(0)�]. In this way, for a(t) we obtain the ordinary
differential equation (ODE)

∂

∂t
a(t)e2κ(t) + 2a(t) · b · e2κ(t) – e2κ(t)σ 2 =

∂

∂t

[
eκ(t)

[
eκ(t) ∂

∂t
(
y(t) – r(0)�(0, t)

)]]
,

which we solve numerically with the given initial conditions. If we approximate a(t) by a
piecewise constant function with values a(i) which change at the tenor point i, then we
obtain a linear system

Lα = F ,

for the vector α = [a(i)], where L is lower triangular with non-zero diagonal elements. In
[55] it is noted that the integral equation � is of the first kind with L2 kernel and a small
perturbation (noise) in the market data that are used to obtain the yield curves leads to
large changes in the model parameter a(t). This means that the problem to compute a(t)
from the data is an ill-posed problem and for this reason we determine the vector α via
Tikhonov regularization as

αδ
μ = argmin

∥∥Lα – Fδ
∥∥2 + μ‖α‖2, (18)

where αδ
μ is an approximation to α, μ is the regularization parameter, δ = ‖F – Fδ‖ is the

noise level, and μ‖α‖2 is a regularization term. We then solve the optimization problem
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(18) to obtain an approximation to the parameter a(t) via the commercial software UnRisk
PRICING ENGINE for the parameter calibrations [46]. By providing the simulated yield
curve, the UnRisk pricing function returns the calibrated parameter a(t) for that yield
curve. Based on s = 10,000 different simulated yield curves, we obtain s different piecewise
constant parameters a�(t), which change their values α�,i only at the m tenor points. We
incorporate these in a matrix

A =

⎡

⎢
⎢
⎣

α11 · · · α1m
...

...
...

αs1 · · · αsm

⎤

⎥
⎥
⎦ . (19)

Appendix D: Numerical methods
The Hull–White model (3) is discretized by applying a finite difference method. As com-
putational domain for the interest rate r(t) we use an interval [rlow, rup], according to [1]
given by

rlow = r(T) – 7σ
√

T , rup = r(T) + 7σ
√

T ,

where r(T) is the yield at the maturity T also known as a spot rate. We divide the spatial
domain into M equidistant grid points {r(1), r(2), . . . , r(M)}, r(i) = r(i – 1) + h with spacial
step size h, and the time interval [0, T] in N points t0 = 0, t1, . . . , tN = T , tn = nτ , with time
step τ . Using the spatial discretization operator L(n) at time point n, we get a system of
ODEs for the vector V = [Vi] = [V (r(i))] of values at the spatial grid points

V (t) – V (t – τ )
τ

= (1 – �)
(
L(t)V (t)

)
+ �

(
L(t – τ )V (t – τ )

)
,

which is given componentwise by

for
(
a(n) – br(i)

)
> 0

L(n)V n
i :=

1
2
σ 2 V n

i+1 – 2V n
i + V n

i–1
h

2
+

(
a(n) – br(i)

)V n
i – V n

i–1
h

– r(i)V n
i ,

for
(
a(n) – br(i)

)
< 0

L(n)V n
i :=

1
2
σ 2 V n

i+1 – 2V n
i + V n

i–1
h

2
+

(
a(n) – br(i)

)V n
i+1 – V n

i
h

– r(i)V n
i ,

so that the Crank–Nicolson scheme in time gives a linear system

(
1 –

1
2
τL(t – τ )

)

︸ ︷︷ ︸
A(ρ�(t))∈RM×M

V (t – τ ) =
(

1 +
1
2
τL(t)

)

︸ ︷︷ ︸
B(ρ�(t))∈RM×M

V (t),

where the matrices A(ρ�(t)), and B(ρ�(t)) depend on ρ�(t) = {a(t), b,σ } for the �th group
of these parameters and are given by

A
(
ρ�(t)

)
= I –

σ 2τ

2h2 J –
τ

2h
(
H+G + H–GT)

+ Ro,
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and

B
(
ρ�(t)

)
= I +

σ 2τ

2h2 J +
τ

2h
(
H+G + H–GT)

– Ro,

where Ro = diag(r(1), . . . , r(M)), H+ = diag(max(a(n) – br(1)), . . . , max(a(n) – br(M))), H– =
diag(min(a(n) – br(1)), . . . , min(a(n) – br(M))), and

J =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

–2 1 0 · · · 0

1 –2 1
. . .

...

0 1
. . . . . . 0

...
. . . . . . . . . 1

0 · · · 0 1 –2

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

, G =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

1 0 0 · · · 0

–1 1 0
. . .

...

0 –1
. . . . . . 0

...
. . . . . . . . . 0

0 · · · 0 –1 1

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

.

This discretization is a parametric high dimensional model of the form

A
(
ρ�(t)

)
V n–1 = B

(
ρ�(t)

)
V n,

with given terminal vector V T , and matrices A(ρ�) ∈R
M×M , and B(ρ�) ∈R

M×M . We solve
this model by propagating backward in time. Here again � = 1, . . . , s = 10,000, m is the total
number of tenor points, and we need to solve this system at each time step n with an ap-
propriate boundary condition and a known terminal value for the underlying instrument.
Altogether we have a parameter space P of size 10,000 × m to which we now apply model
reduction.
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