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Abstract
Powder-bed-based additive manufacturing involves melting of a powder bed using a
moving laser or electron beam as a heat source. In this paper, we formulate an
optimization scheme that aims to control this type of melting. The goal consists of
tracking maximum temperatures on lines that run along the beam path.
Time-dependent beam parameters (more specifically, beam power, spot size, and
speed) act as control functions. The scheme is greedy in the sense that it exploits
local properties of the melt pool in order to divide a large optimization problem into
several small ones. As illustrated by numerical examples, the scheme can resolve heat
conduction issues such as concentrated heat accumulation at turning points and
non-uniform melt depths.

Keywords: Additive manufacturing; Powder bed fusion; Process control; Greedy
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1 Introduction
Powder bed fusion (PBF) is a type of additive manufacturing (AM) where metal powder is
melted by a laser or electron beam in a layer-wise fashion to enable the production of ge-
ometrically complex parts [1]. AM undergoes continuous progress towards a technology
that is robust and efficient, but there are still issues when it comes to quality and repeata-
bility.

It is important for completed parts to meet the mechanical requirements and quality
standards specified by the applications for which they are manufactured. The qualities of
a completed part, such as tensile strength and surface roughness, depend on the melting
process, which in turn is governed by several dozen material and process parameters such
as preheating temperature, powder packing ratio, and beam speed, among other. Correla-
tions between process parameters, process signatures (such as melt pool size and temper-
ature), and product qualities are presented in [2] and references therein. Due to these cor-
relations, the design of process settings requires critical attention. However, this involves
extensive and costly experimental work and the resulting melting schemes implemented
in machines rely on an excessive amount of parameters and functions in order to account
for the dynamics of the melting process. This approach makes it difficult to optimize PBF
and limits both the number of applications and the number of materials available for man-
ufacturing.
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As of late, computation based techniques are used to improve PBF related process con-
trol, i.e., to tackle the question of how to select different process parameters in order to
build parts with desired properties [2, 3]. A common approach is design of (computa-
tional) experiments (DoE) [4, 5], which is an exploratory tool used to identify parameters
that influence the qualities of the completed part. In [6], a DoE with a finite element model
determines that the beam power and beam speed are the two process controllable param-
eters that have the largest impact on peak temperature during a single track melt. In [7], a
DoE based on a simple thermal model [8] is used to determine optimal process parame-
ters for building high density parts. Also this study shows that the beam power and beam
speed have the largest impact on melt pool width and depth. Empirical modelling tech-
niques such as artificial neural networks are also used to determine the optimal selection
of process parameters, see, e.g., [9] as well as [10] and references therein.

While DoE is useful for developing a deeper understanding of the melting process, it can
be a tedious affair to use them for optimization. An optimal control approach might be
better suited for that purpose, as it starts off with preset, desired melt characteristics and
seeks corresponding optimal process parameters via a mathematical optimization prob-
lem.

Attempts of optimizing melt pool characteristics have been made based on the two-
phase Stefan problem, where the free boundary between solid and liquid is understood via
the Stefan condition. In the context of PBF, the free boundary characterizes the size and
shape of the melt pool. In [11], the two-phase Stefan problem in a container is considered,
and the temperature on the container boundary is optimized with respect to a desired
transient evolution of the free boundary. Optimization problems based on quasi-steady
state formulations of the two-phase Stefan problem are solved in [12, 13]. Here the desired
free boundary between liquid and melt is prescribed and the goal involves tracking the
melt temperature on the prescribed free boundary.

This paper is part of an effort that aims to reduce the number of parameters needed
in the design of melt schemes. We present a simulation based framework that seeks to
facilitate process optimization and material development, while keeping computational
costs at a minimum. Thus, computational efficiency is prioritized as we trade a certain
level of detail for a fast optimization scheme that can be applied to the melting of large
domains. The scheme is efficient for three reasons:

• The continuum thermal model for describing heat conduction includes an analytic
solution that allows for fast and pointwise computation of temperatures during
melting [14, 15]. The model assumes that the beam parameters are piecewise constant
in time. We remark that beam parameters in actual AM machines are often set to vary
in such a discontinuous way. The model does not include phase change, and does in
particular not capture the solid-liquid interface. Instead, we use the term melt pool to
simply denote the region where the temperature is larger than the melt temperature.

• The formulation of the optimization problem involves a severe model order
reduction. Rather than striving for some desired temperature distribution that is
difficult to express, the goal consists of tracking preset reference maximum
temperatures on lines that run along the beam path.

• The resulting optimization problem is solved by a greedy algorithm that divides it into
several small problems that are easier to solve. These sub-problems are solved
consecutively as the beam traverses the powder bed.
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Together, this framework comprises an optimization scheme for process control as sug-
gested in [16].

More general approaches were tested and will be further explored in future work. For
instance, a full finite element simulation of the heat equation combined with an adjoint-
based optimization was implemented. However, this must be made more computationally
efficient by appropriate simplifications before it can be used for process optimization. The
proposed Greedy algorithm was chosen as a first attempt in this direction.

As noted earlier, DoE suggests that the beam parameters have the largest impact on the
temperature distribution during melting and, ultimately, on the quality of the completed
part. For this reason, we choose the beam power, spot size and speed as control variables.
Our scheme allows for time-dependent beam parameters, which increases their ability to
control the melting process. An ability to optimize these beam parameters is useful not
only for validation, but also in order to speed up the development of process settings for
new (and old) materials. Since optimization is an iterative process, the solver of the for-
ward problem needs to be highly efficient. The analytic solution provides such efficiency.

The remainder of this paper is organized as follows. Section 2 describes the thermal
model and its corresponding analytic solution. The optimization problem is formulated
in Sect. 3. Section 4 and Sect. 5 propose two greedy algorithms for solving said problem. In
Sect. 6 we apply our optimization scheme in numerical examples. Here we also detail how
the combination of the two greedy algorithms can aid in the development of so called beam
parameter functions. Additional comments and concluding remarks are given in Sect. 7.

2 Thermal model
Consider the heat equation on the lower half space � = R

2 × R– during a time span T =
(0, T]. Let � denote the surface boundary z = 0 and let uinit denote the constant initial
temperature. The beam travels on the surface � along a preset, piecewise linear path

Cs =
{

xs(t) : t ∈ T
}

,

where xs(t) = (xs(t), ys(t), 0) is the position of the center of the beam at time t. The heat
flux � due to a scanning electron beam is modeled as a Gaussian function

� = �(x, y, t) =
P(t)

2πσ (t)2 exp
(

–
(x – xs(t))2 + (y – ys(t))2

2σ (t)2

)
.

The three beam parameters are the absorbed beam power P(t), the beam spot size σ (t),
and the beam speed v(t) = |v(t)|. Here v(t) = (vx(t), vy(t), 0) = (v(t) cos θ (t), v(t) sin θ (t), 0),
where θ (t) is the angle between the positive x-axis and the direction of the path. This angle
is known for any t since the beam path Cs is preset and it follows that v uniquely defines
the vector (vx, vy, 0). The position of the beam xs(t) depends on the speed with which the
beam has traveled the path Cs up to time t. The beam parameters are often set to vary in a
piecewise constant fashion in AM machines. The following definition makes the concept
of piecewise constant beam parameters more precise.

Definition 1 Given times 0 = t0 < t1 < . . . < tN = T ,

(tn–1, tn] =
(
ti
n, tf

n
]
, n = 1, 2, . . . , N ,
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is a partition of T consisting of N segments. Index n indicates the nth segment in the
partition, and a segment in turn is a collection of the following data:

– ti
n, tf

n; an initial time and final time, respectively,
– (Pn,σn, vn); a triplet of power, spot size, and speed such that

(
P(t),σ (t), v(t)

)
= (Pn,σn, vn) if t ∈ (

ti
n, tf

n
]
,

– �s
n; a line traversed by the beam between times ti

n and tf
n,

– xi
n, xf

n; the initial position and final position of �s
n, respectively.

– θn = tan–1( yf
n–yi

n
xf

n–xi
n

); the angle between the positive x-axis and the direction of the path.

With ẑ the outward unit normal of �, the heat transfer problem can be written as

ρcp
∂u
∂t

– ∇ · (λ∇u) = 0 in � × T ,

(λ∇u) · ẑ = � on � × T ,

u(·, 0) = uinit in �,

(1)

where ρ , cp, λ denote density, heat capacity, and thermal conductivity, respectively. These
material parameters are assumed to be constant. This gives us the thermal diffusivity κ =
λ/ρcp. Problem (1) has an analytic solution [14, 15]. We refer to these sources for a detailed
derivation of this solution and merely outline it here.

Proposition 1 Given a partition as in Definition 1, the solution of problem (1) can be
written as

u(x, t) = uinit +
n–1∑

k=1

uI
n,k(x, t) + u�

n (x, t) for t ∈ (
ti
n, tf

n
]
, n = 1, 2, . . . , N ,

where uI
n,k is the temperature due to the earlier scanning of segment k < n and u�

n is the
temperature due to the current scanning of segment n.

The analytic expressions of uI
n,k and u�

n are derived in [15], wherein it also described
how the solution can be efficiently computed.

The power is largely determined by the beam current, and this current can not be ad-
justed at a fast rate. Therefore, P is set to be constant for all t ∈ T for the remainder of this
paper. It should be noted, however, that if one would be interested in optimizing all three
beam parameters, the following extends to the case of non-constant power as well.

A remark on our thermal model is in order, as it does not include cooling, the latent
heat of fusion nor a description of the solid-liquid intersection between powder and melt
pool, which makes the notion of a melt pool quite fuzzy. Here we use the term melt pool
to simply denote the volume where the temperature is larger than the melt temperature.
Hence we use the isothermal {x(t) : u(x, t) = umelt}, where umelt is the melt temperature
of the powder, to represent the solid-liquid interface. Furthermore, since the model is a
continuum model, it breaks down on the mesoscale where we see phenomena such as
balling, inter-capillary effects, Plateau–Rayleigh instabilities, thermal expansion, among
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other [17, 18]. Despite these restrictions, it is anticipated that effective parameters, tuned
via comparisons with experiments, can be used to make the thermal model reliable enough
for control and optimization. The optimization problem described below also aligns with
the overarching aim to reduce the number of parameters needed for process control.

3 Formulation of the optimization problem
The goal is to optimize the melting process with respect to the beam spot size and beam
speed. Since these beam parameters are defined in a piecewise constant fashion according
to Definition 1, we can write

σ (t) =
N∑

k=1

σkχ(ti
k ,tf

k ],

v(t) =
N∑

k=1

vkχ(ti
k ,tf

k ],

where χ is the indicator function. Since we aim to optimize the speed, either the times ti
n, tf

n
or the positions xi

n, xf
n, n = 1, 2, . . . , N , in Definition 1 will have to vary during optimization.

Due to the beam path being preset and reasons that will become clear in the next section,
it is better to fix the positions. Therefore it is more appropriate to express σ and v as space
dependent functions instead. To this end, introduce the scanning distance

γ
(

xs) =
n–1∑

k=1

∣∣xf
k – xi

k
∣∣ +

∣∣xs – xi
n
∣∣, if xs ∈ �s

n, n = 1, 2, . . . , N .

Then we have the following beam parameter functions:

σ
(
γ
(

xs)) =
N∑

k=1

σkχ(γ (xi
k ),γ (xf

k )],

v
(
γ
(

xs)) =
N∑

k=1

vkχ(γ (xi
k ),γ (xf

k )].

(2)

From (2), a decision vector can immediately be extracted as d = (σ , v) = {(σk , vk)}N
k=1 =

(σ1, v1,σ2, v2, . . . ,σN , vN ). The variables in the decision vector are bounded due to practical
limitations, dmin ≤ d ≤ dmax.

The control of the melting process is a multiobjective optimization problem due to the
many correlations between process parameters, process signatures, and product qualities.
The qualities of the final part are strongly dependent on the temperatures obtained dur-
ing the melting process [19]. The characteristics of the melt pool are important process
signatures. If the melt pool is too small relative to the line offset (i.e., the distance between
two hatch lines) and layer depth, powder might be left unmelted between hatch lines or
between layers, causing discontinuities and porosity. Furthermore, high surface temper-
atures might result in too much evaporation and subsequent recoil pressure, which can
result in undesired material transport such as ejection of molten materials that later cause
defects [20] or formations of small ridges that prohibit the deposition of new powder lay-
ers and thus cause the manufacturing process to terminate [21]. Qualitatively, therefore,
the choice of cost functional can be motivated by the desire to
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1. maintain a uniform and appropriately sized melt pool during melting, and
2. avoid too high surface temperatures.

3.1 A reductive approach
Consider a beam scanning along a path Cs. Denote by ω a supposed desired melt pool

ω(t) =
{

x ∈ � : u(x, t) ≥ umelt
}

.

It is difficult to express ω(t) explicitly. Instead, we consider the final solidified volume.
With our purely thermal model, the powder-solid interface of this volume is dependent
on the maximum temperature and would be easier to explicitly define than the melt pool
ω(t). However, even further reductions can be made by isolating particular curves on this
powder-solid interface. More precisely, we introduce a secondary path Cwd chosen such
that it lies on a desired powder-solid interface. The secondary path is related to the beam
path by some function F : Cs → Cwd and we write

Cwd =
{
F
(

xs(t)
)

: t ∈ T
}

and let xwd = F(xs). For example, if the beam path consists of one segment, then a simple
example of a secondary path is

Cwd =
{(

xs(t) + w sin θ1, ys(t) – w cos θ1, –d
)

: t ∈ T
}

.

The idea is that the secondary path relates to Cs via a width w and a depth d. With this,
the description of the optimal melting reduces to two paths; Cs (preset) and Cwd (chosen
with respect to Cs). This reductive approach is illustrated in Fig. 1.

As we shall see in the following section, the steps taken above allow us to formulate a
simple optimization problem that is efficient in the sense that we, instead of tracking some
desired transient melt pool ω(t) in a volume, only track two scalar values umelt and usurf

on paths.

3.2 Mathematical formulation
Following the reduction in Sect. 3.1, we are now interested in maximum temperatures on
paths running along the beam path since these temperatures determine the size of the
subsequent solidified volume. Before we formulate the problem, we need the following.

Definition 2 (Hatch line) Given a partition as in Definition 1, two segments k and k + 1,
1 ≤ k < N – 1, are connected if xf

k = xi
k+1. A sequence {i}K

i=k of connected segments form a
hatch line if θn = θm ∀n, m ∈ [k, K] and θk–1 �= θk and θK �= θK+1.

The total number of hatch lines M satisfies 1 ≤ M ≤ N .
Define also the maximum temperature field

M(x; d) = max
t∈T

{
u(x, t; d)

}
.
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Figure 1 The desire to optimize the size and shape of the melt pool is reduced to a problem of tracking
maximum temperatures on paths. (a) Temperature distribution due to a moving beam. (b) Maximum
temperature obtained during melting, with the solidified volume highlighted. (c) Introduction of beam path
Cs and secondary path Cwd . The secondary path is drawn along the desired liquid-solid interface.
(d) Maximum temperature after optimization, with the solidified volume highlighted. The shape of this
volume is optimized due to the tracking of reference temperatures usurf and umelt on Cs and Cwd ,
respectively.

We want M(x; d) = umelt for all x on Cwd
i in order to ensure a uniform and thorough melt-

ing. Similarly, M(x; d) should not exceed some maximum allowed temperature usurf on
Cs.

The resulting objective vector becomes

f (d) =
{

f1(d), f2(d)
}

, (3)

where

f1(d) =
∫

Cwd
α
(

xwd) · (M(
xwd; d

)
– umelt

)2 dx,

f2(d) =
∫

Cs
α
(

xs) · (M(
xs; d

)
– usurf

)2 dx.
(4)

Here

α(x) =

⎧
⎨

⎩
0 if x is near the start or end of a hatch line,

1 otherwise
(5)

is a weight that excludes intervals from the cost functional if they are very close to the
start point or end point of a hatch line. This type of weight is inserted because the total
heat supplied to a region near a start point, for instance, is comparatively small since the
beam only moves away from it rather than passing it. As a consequence, it can be difficult
to reach the reference temperatures in these regions and if included, they deteriorate the
overall performance of the optimizer. Therefore, it is better to ignore these intervals in
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the goal functional and instead let them be covered by the contouring stage, in which
the beam scans along the boundary of the shape being melted. The contouring stage also
improves the surface finish of the part [22]. Effectively, this choice of α simply means that
the domains of integration in (4) become slightly smaller.

The functionals (4) are of tracking type where we use the L2 norm to minimize the dis-
tances between the actual maximum temperature and the desired maximum tempera-
tures. The reason for tracking these temperatures rather than putting constraints on the
temperature is that we want to control the shape and size of the melt pool not the temper-
ature itself. The reason for tracking also the surface temperature is that it helps restricting
the shape of the melt pool. Without this restriction, one could potentially end up with an
extremely wide and shallow type of melting, for instance. However, it leads to multiob-
jective optimization. We also note that the functionals (4) are nondifferentiable, because
M(x; d) is not differentiable with respect to u due to the evaluation of the maximum. Both
these facts make the resulting optimization problem more difficult. We show in Sect. 6
how these difficulties can be overcome.

The analytic solution presented in Sect. 2 allows for pointwise computations of temper-
atures, and that is why we can easily compute temperatures on lines, which saves a large
amount of computation time compared to doing so on surfaces or in volumes. This remark
highlights a big motivation behind the reduction carried out in Sect. 3.1.

The objective vector (3) needs to be translated into a scalar valued cost functional in
order to use standard nonlinear programming solvers. We use a scalarization known as
the weighting method. In this method the weighted sum of the objectives is minimized.
We introduce weights Wi ≥ 0, i = 1, 2. The scalarized optimization problem becomes

minimize J(d) = W1f1(d) + W2f2(d)

subject to

state eq. (1), (PDE constraint)

dmin ≤ d ≤ dmax. (Parameter constraint)

(6)

The choice of weights should represent the relative importance of the objectives; impor-
tant objectives are weighted more heavily.

4 A first greedy algorithm for solving the scalarized optimization problem
In order to speed up the optimization, we propose a method that makes use of the fact
that the melt pool, and hence maximum temperatures, are localized to the beam. The
proceeding involves a division of T into subintervals on the form

⋃q
i=p(ti

i , tf
i ]. Local opti-

mization problems are solved on these subintervals and optimal parameter pairs (σp, vp)
are frozen sequentially. When given parameter pair(s) has been frozen, the local problem
is translated in time (and space) and the initial condition is updated. As such, this greedy
type of algorithm divides the optimization problem (6) into several smaller optimization
problems that are faster to solve.

The goal functional in (6) involves maximum temperatures over time near the beam
path, which is a property that is local to the beam itself. Given a point P on, say, Cs, it is
known that P will obtain its largest temperature during a time window when the beam,
and the melt pool it generates, passes P. Therefore, it is the values of the beam parameters
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during this particular time window that has the highest influence on maximum temper-
ature at P. The reasoning is similar for a point on Cwd, the only difference being that it
takes slightly longer to reach the maximum temperature on Cwd since heat diffusion is not
an instantaneous process. Therefore, we decide to split the optimization problem (6) into
multiple subproblems that are solved sequentially in time while parameter pairs are frozen
as we go along.

In order to formalize the method, we make the following definition.

Definition 3 (Window). Given a partition as in Definition 1, a time window Tp,q =
∪q

i=p(ti
i , tf

i ] is defined as a set of adjacent segments in T . The size of Tp,q is the number of
segments that constitutes it. The local beam path and local secondary path corresponding
to Tp,q are given by

Cs
p,q =

{
xs(t) : t ∈ Tp,q

}
,

Cwd
p,q =

{
xwd(t) : t ∈ Tp,q

}
.

Hence the beam traverses the path Cs
p,q during time Tp,q.

Define a local decision vector dp,q = {(σk , vk)}q
k=p and a local maximum temperature field

Mp,q(x; dp,q) = max
t∈Tp,q

{
u(x, t; dp,q)

}
.

Similarly, we define the local objectives

g1(dp,q) =
∫

Cwd
p,q

βp,q
(

xwd) · α(
xwd) · (Mp,q

(
xwd; dp,q

)
– umelt

)2 ds,

g2(dp,q) =
∫

Cs
p,q

βp,q
(

xs) · α(
xs) · (Mp,q

(
xs; dp,q

)
– usurf

)2 ds.

Here βp,q is used to prioritize minimization of the errors over the earlier segments in the
window. This weight accentuates the error on the segment(s) that is about to become
frozen and it plays a crucial role; since the greedy algorithm never returns to a segment
once it has been frozen it is important that the solver prioritizes this segment. Here we let
βp,q be piecewise constant over the segments and determined by a function that decreases
quadratically along Cs

p,q. See Fig. 2. Formally, we have

βp,q
(

xs) = χ(γ (xi
p),γ (xi

p+r)] +
q–1∑

k=p+r

(
γ (xf

q) – γ (xi
k)

γ (xf
q) – γ (xk

p)

)2

χ(γ (xi
k ),γ (xf

k )]

on Cs
p,q. We define βp,q(xwd) in a similar fashion. The choice of a quadratic underlying

function is based on tests that investigate how the weight affects the optimization results.
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Input : A partition as in Definition 1.
Remaining optimization problem data (Cwd, umelt, usurf , bounds, weights).

Parameters: (σ , v) = {(σk , vk)}N
k=1 
 Parameter pairs/decision array.

p = 1 
 Index of first segment in current window.
q ∈ {1, . . . , N} 
 Index of last segment in current window.
r ∈ {1, . . . , q – p + 1} 
 Number of segments to freeze next.

Output : (σ opt, vopt), Jopt 
 Optimal decision vector and objective with respect
to the subproblems (7). (We cannot expect to find the optimal decision
vector for the global problem (6), only an approximation of it.)

1 begin
2 while p ≤ N do

3 Solve subproblem (7) for window Tp,q with initial guess
dp,q = {(σk , vk)}q

k=p to find candidate decision variables {(σ̃k , ṽk)}q
k=p.

(σk , vk) ←
⎧
⎨

⎩
(σ̃k , ṽk), k = p, . . . , q

(σ̃q, ṽq), k = q + 1, . . . , N

 Update parameter pairs.

4 (σ opt
k , vopt

k ) = (σk , vk), k = p, . . . , p + r – 1 
 Freeze r parameter pairs.

5 Change window location:
6 p ← p + r 
 Update first index.

7 q ← min{q(p) + r, N} 
 Update last index.

8 r ← min{r(p), q – p + 1} 
 Update number of segments to freeze next.
9 end

10 Jopt = J((σ opt, vopt)) 
 Compute optimal objective in (6).
11 end

Algorithm 1: Greedy algorithm for finding an approximate solution of the scalarized
problem (6). Note that q – p + 1 equals the size of the current window.

Now, by employing the same scalarization as for the global problem (6), the resulting
scalarized subproblem becomes

minimize Jp,q(dp,q) = W1g1(dp,q) + W2g2(dp,q)

subject to

state eq. (1), (PDE constraint)

dp,qmin ≤ dp,q ≤ dp,qmax . (Parameter constraint)

(7)

We can now formulate the greedy algorithm. This is done in Algorithm 1, and some com-
plementary comments are given below. An illustration of the main idea is given in Fig. 3.

L 4: Future parameter pairs are updated as well, because the values found in the cur-
rent window are likely a better guess than the initial one.

L 5: The segments corresponding to the frozen parameter pairs are removed from
the window. In the implementation, certain checks can be made to determine
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Figure 2 The weight βp,q is based on a quadratic function that decreases along the local beam path Cs
p,q . It is

piecewise constant, largest on the first r segments in the window since they are about to be frozen (see
Algorithm 1), and takes different values over the remaining segments. The weight is identical for the local
secondary path Cwd

p,q .

Figure 3 The greedy algorithm divides the optimization problem (6) into several smaller optimization
problems that are easier to solve. The procedure involves a division of the beam path into subintervals.
Localized optimization problems are solved on these intervals and optimal parameters are frozen in steps.
After each such step, a new sub-problem is created by translating in time (ans space) and updating the initial
condition. Here q = p + 3 and r = 1 (see Algorithm 1).

whether freezing should take place or not (as in, the amount of pairs to freeze).
We leave out the details.

L 7-9: The window size is updated in preparation for the next iteration. The min opera-
tor is used to handle the ending when q = N . Note also that the parameters q and
r may depend on p (i.e., on the location of the window). For instance, in a region
where the beam path is complex or where the lengths of the segments are small,
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we might require a large window size q – p + 1, and hence a large q. Furthermore,
the size of the melt pool should be taken into account when choosing the value
of q.

The presented greedy algorithm can be utilized as a standalone tool for process opti-
mization. If the beam path consists of N segments, the total number of parameters to
optimize becomes 2N . Now, depending on the design of the layer being melted, the value
of N may be very high. In the next section we present a second version of the greedy al-
gorithm that has the ability to significantly lower the size of the decision vector.

5 A second greedy algorithm based on fitting beam parameter functions
The greedy algorithm of this section expands on an example in [15]. As we shall see, it
is similar to Algorithm 1 in most regards, but it is based on educated guesses of how the
beam parameters should behave.

Recall from (2) the expression for piecewise constant beam parameters. The subsequent
optimization makes no assumption on the behavior of the beam parameters along the
beam path. An alternative approach is to do curve fitting of prespecified beam parameter
functions. To this end, we write

σ
(

xs) =
N∑

k=1

Fσ
(

xi
k ;�σ

)
χ(γ (xi

k ),γ (xf
k )],

v
(

xs) =
N∑

k=1

Fv(xi
k ;�v)χ(γ (xi

k ),γ (xf
k )],

(8)

where � = (�σ ,�v), the coefficients in our beam parameter functions, become our new
decision vector that we want to optimize. Given a decision vector, the beam parameters
are then evaluated as (see (2))

σk = Fσ
(

xi
k ;�σ

)
,

vk = Fv(xi
k ;�v).

These parameter functions are defined with respect to the hatch lines as

Fσ (xs;�σ ) = Fσ
l (xs;�σ

l )
Fv(xs;�v) = Fv

l (xs;�v
l )

}

if xson hatch line l.

The reason for splitting Fσ and Fv between hatch lines is that a new hatch line often re-
quires a rapid jump in beam parameter values.

It follows from Definition 2 that hatch lines can simply be seen as an intermediate level
between the segments and the beam path. Let S : {1, . . . , M} → {1, . . . , N} be an injective
function that, given a hatch line m, returns the first segment in m. Let L : {1, . . . , N} →
{1, . . . , M} be a surjective function that, given segment n, returns the hatch line that con-
tains it. With these two functions it is possible to seamlessly work with both hatch lines and
segments. For instance, the local beam path that consists of hatch lines 1 to 3 is Cs

S(1),S(4)–1.
In terms of implementation, the second greedy algorithm is in many ways similar to the

first greedy algorithm from the previous Sect. 4. They both rely on Definition 1 and piece-
wise constant beam parameters and they both solve subproblems of the form (7). What
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Figure 4 Difference between the two greedy algorithms. In the second version (b), the additional step
significantly reduces the dimension of the decision vector if the number of lines is much smaller than the
number of segments, i.e., if M� N.

separates them is the content of the decision vector d as illustrated in Fig. 4. In essence,
the first algorithm optimizes the beam parameters segmentwise while the second algo-
rithm optimizes the beam parameters linewise. The second greedy algorithm is detailed
in Algorithm 2.

6 Numerical examples and discussion
We apply the greedy algorithm on a couple of single layer problems. The scalarized sub-
problems (7) are solved with the L-BFGS-B optimization algorithm [23, 24] provided by
the optimization package of SciPy [25]. Given some iterate d̂p,q, scipy.optimize ap-
proximates the gradient of Jp,q(d̂p,1) using a 2-point finite difference estimation. Then L-
BFGS-B, which is a quasi-Newton method, approximates the Hessian that enters in the
local quadratic approximation of Jp,q(d̂p,q). The solver options are selected to fit the scale
of the problems considered here.

It is worth noting that the objective Jp,q is not differentiable. At an initial stage, not only
L-BFGS-B but also some gradient free methods were tested, and L-BFGS-B performed
the best out of all solvers in those trials. It is not remarkable that L-BFGS-B performs well
on nonsmooth problems as well (although we can not expect the same convergence as for
a smooth optimization problem) [26]. On a related note, in the implementation we relax
the scalarized subproblem (7) somewhat by replacing the (local) maximum temperature
field Mp,q(x; dp,q) with an approximation,

Mp,q(x; dp,q) ≈ 1
K

log

(∫

Tp,q

exp
(
K · u(x, s; dp,q)

)
ds

)
,

for an appropriate scalar K , which improves performance slightly. Finally, while the choice
of starting point/initial decision vector can have a large impact on the performance of the
optimizer, efforts related to this choice are not the main focus here and so disregarded.

It is important to emphasize that for practical use of the optimization scheme, the mate-
rial data that enter the thermal model need to be fit with respect to experiments or a more
detailed model. The determination of effective parameters is crucial since the model is
simple and based on several assumptions. In the following examples we use material pa-
rameters that represent Ti-6Al-4V.
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Input : A partition as in Definition 1; M hatch lines.
Remaining optimization problem data (Cwd, umelt, usurf , bounds, weights).

Parameters: � = {�l}M
l=1 
 Coefficient sets/decision array.

p = 1 
 Index of first hatch line in current window.
q ∈ {1, . . . , M} 
 Index of last hatch line in current window.
r ∈ {1, . . . , q – p + 1} 
 Number of hatch lines to freeze next.

Output : �opt, Jopt 
 Optimal decision vector and objective with respect to the
subproblems (7). (We cannot expect to find the optimal decision vector for
the global problem (6), only an approximation of it.)

1 begin
2 while p ≤ N do

3 Solve subproblem (7) for window TS(p),S(q+1)–1 with initial guess
dS(p),S(q+1)–1 = {�l}q

l=p to find candidate decision variables {�̃l}q
l=p.

4 �l ←
⎧
⎨

⎩
�̃l, l = p, . . . , q

�̃q, l = q + 1, . . . , M

 Update parameter pairs.

5 �
opt
l = �l, l = p, . . . , p + r – 1 
 Freeze r parameter pairs.

6 Change window location:
7 p ← p + r 
 Update first index.

8 q ← min{q(p) + r, N} 
 Update last index.

9 r ← min{r(p), q – p + 1} 
 Update number of segments to freeze next.
10 end

11 Jopt = J(�opt) 
 Compute optimal objective in (6).
12 end

Algorithm 2: Second greedy algorithm for finding an approximate solution of the scalar-
ized problem (6). It is in many ways similar to the first Algorithm 1, but uses a different
decision vector d. Note that indices p, q and r now count over hatch lines instead of over
segments.

In the current implementation of the beam scanning, there are no pauses between any
segments during melting. For instance, a jump from one hatch line to the next is instan-
taneous. However, adding delay time for jumps is straightforward.

6.1 Example 1: segmentwise optimization on snake pattern
We illustrate how the optimization scheme resolves certain heating related issues. The
beam path is shown in Fig. 5. It consists of 50 segments, each with length 0.5 mm. The
line offset during hatching is loff = 200 μm. The hatching is performed in a snake-like
manner in the upward y-direction. The weight α(x) (see (5)) is zero on the first 0.4 mm
and last 0.4 mm of a hatch line. While this beam path amounts to a simple rectangular
shape, it still allows for several types of investigations.
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Figure 5 Beam path in Example 1: 5 hatch lines with length 5 mm. The path consists of 50 segments that are
separated by the small ticks. The line offset (i.e., the distance between two adjacent lines) is 200 μm. The thin
gray lines indicate the secondary path Cwd .

Table 1 Parameter values in Example 6.1.

PDE specific input
Thermal conductivity λ 20 (W/mK)
Thermal diffusivity κ 8.45e–6 (m2/s)
Initial temperature uinit 1000 (K)
Absorbed beam power P 100 (W)

Greedy algorithm specific input
Reference surface temperature umelt 1800 (K)
Reference melt temperature usurf 2800 (K)
Secondary beam position, width w 100 (μm)
Secondary beam position, depth d 50 (μm)
Weight 1 W1 0.7
Weight 2 W2 0.3
Window size q – p + 1 5
Segments frozen in each iteration r 1
Initial spot size on segment k σk 0.2 ∀k (mm)
Initial speed on segment k vk 0.5 ∀ k (m/s)
Bounds, spot size (σmin ,σmax) (1e–2, 1e0) (mm)
Bounds, speed (vmin , vmax) (1e1, 1e4) (mm/s)

The secondary path is set to

Cwd =
{(

xs(t), ys(t) + w, –d
)

: t ∈ T
}

.

To avoid porosity, w and d need be chosen such that unmelted gaps between lines are
avoided. Here we set w = loff /2 = 100 μm and d = 50 μm. A complete list of parameter
values is given in Table 1. Figure 6 shows the solution of (6) as obtained by the greedy Al-
gorithm 1. We see rapid variations in the optimized beam parameters, in particular close
to the turning points where they seek to neutralize the concentrated influx of heat that oc-
cur in those regions. Problem (1) is then solved for the optimized beam parameters and the
resulting maximum temperature in various slices of the domain is shown in Figs. 7, 8, and
9. These figures include the initial maximum temperature for comparison. The results
indicate that despite the reductions leading up to its formulation, the greedy algorithm is
able to control the heat generated during melting to a rather large degree.

One concern with the greedy algorithm is that it carries with it several uncertainties.
Many trials are required to find proper values for the parameters that make up the scheme,
such as α, the window size and segment lengths, since they depend on the beam path and
thermal diffusivity.
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Figure 6 The solution as obtained by the first greedy algorithm. The dotted parts indicate the intervals where
the weight α is 0 (the start and end of the hatch lines).

Figure 7 A comparison between maximum temperatures on the surface (z = 0) before optimization (top)
and after optimization. The optimization scheme resolves the heat accumulation at the turning points.

6.2 Example 2: segmentwise optimization on nonparallel pattern
We melt the first quadrant of an annulus. The annulus has an inner radius ri = 1 mm and
outer radius ro = 5 mm. The beam path is shown in Fig. 10. It consists of 19 lines of length
4 mm. Two adjacent lines differ by an angle of 5◦. Consequently, the distance between them
at ri and ro are about 87μm and 436μm, respectively. Each line is divided into 8 segments
of equal length 0.5 mm. The hatching is performed in the counter-clockwise direction.
The thin gray lines indicate the secondary path Cwd. Once again, the weight α(x) is zero
on the first 0.4 mm and last 0.4 mm of a hatch line. The remaining parameters are identical
to the ones used in the previous example and are listed in Table 1.

Only the blue part of the beam path is considered during optimization. More precisely,
we apply the greedy algorithm on the first 5 lines only. The results from this optimization
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Figure 8 A comparison between maximum temperatures in the cross-section x = 2.5 mm before
optimization (top) and after optimization. Initially, the melt area increases for each hatch line since the heat
influx is larger than the rate of diffusion. The optimization scheme resolves this issue and makes the area more
uniform.

Figure 9 A comparison between maximum temperatures in the cross-section y = 2 loff = 0.4 mm (i.e., along
the 3rd hatch line) before optimization (top) and after optimization. The depth of the melt area is reduced and
made more uniform. The domain is scaled by a factor 10 in the vertical direction.

Figure 10 Beam path in Example 2 for melting the
first quadrant of an annulus with ri = 1 mm and
outer radius ro = 5 mm. The entire beam path
consists of 19 lines of length 4 mm. Each line is
divided into 8 segments of equal length 0.5 mm.
Only the blue part, Cs , of the entire beam path is
considered during optimization and the results from
this optimization is then extended to the entire
beam path. The path consists of 40 segments that
are separated by the small ticks. The thin gray lines
indicate the secondary path Cwd .

is then extended by letting the beam parameters on lines 6-19 equal the optimal beam
parameters on line 5.
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Figure 11 Optimal beam parameters in the second example, as obtained by the first greedy algorithm. The
dotted parts indicate the places where the weight α is 0 (the start and end of the hatch lines). The parameter
values start to stabilize somewhat by the fifth line. This motivates us to copy the parameter values for the fifth
line to the remaining lines 6-19 that were omitted in the optimization.

Figure 11 shows the solution of the optimization problem. The speed increases along
each hatch line since the width between a hatch line and the corresponding secondary
path decreases as the hatch line approaches r = 1 mm (see Fig. 10).

After having extended this solution to the entire beam path, problem (1) is solved for the
optimized beam parameters and the resulting maximum temperature is shown in Figs. 12
and 13. These figures include the initial maximum temperatures for comparison.

The plots in Fig. 13 confirm that the extension of the solution onto remaining lines 6-19
works well. While the temperature on Cwd increases near the inner radius of the annulus
as the scanning progresses, this increase is small and does not justify applying the greedy
algorithm on the entire beam path, 19 lines, rather than just 5 lines. This is just a small ex-
ample of how the results from the greedy algorithm on a very small section can be utilized
on larger sections of the build area. In general, this procedure offers an efficient method
for improving process control: first examine and optimize typical problematic melting sce-
narios, then combine the results and extend them to the remainder of the layer.

6.3 Example 3: linewise optimization on snake pattern
We now use the second greedy algorithm to solve the problem introduced in the first
example, Sect. 6.1, and compare the results with the results obtained by the first greedy
algorithm. Motivated by the solution obtained by the first greedy algorithm, see Fig. 6, we
make the following ansatz. Let

�l =
(
�σ

l ,�v
l
)

=
(
Cσ

1,l, Cσ
2,l, Cσ

3,l, Cσ
4,l, Cv

1,l, Cv
2,l, Cv

3,l, Cv
4,l

)
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Figure 12 A comparison between maximum temperatures on the surface (z = 0) before optimization (top)
and after optimization. The optimization scheme resolves the heat accumulation near the inner radius of the
annulus. The optimized maximum surface temperature appears slightly jagged along the beam path, which
suggests that the segment length of 0.5 mm is too big.

and

Fσ
l
(

xs;�σ
l
)

= Cσ
1,l

(
1 +

Cσ
2,l

1 + Cσ
3,l(γ (xs) – γ (xi

S(l)))
Cσ

4,l

)
,

Fv
l
(

xs;�v
l
)

= Cv
1,l

(
1 +

Cv
2,l

1 + Cv
3,l(γ (xs) – γ (xi

S(l)))
Cv

4,l

)
,

(9)

for l = 1, . . . , M. Hence we associate 8 coefficients with each hatch line. From the beam path
in Fig. 5, we have M = 5. We solve optimization problem (6) according to Algorithm 2. The
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Figure 13 A comparison between maximum temperatures on the (extended) secondary path and
(extended) beam path. The reference temperatures umelt = 1800 K and usurf = 2800 K are successfully tracked.

Figure 14 The solution as obtained by the second greedy algorithm. The solution is a piecewise constant
discretization of the beam parameter functions Fσ and Fv in (9). The solution obtained by the first greedy
algorithm is included for comparison.

window always consist of 1 hatch line, i.e., 10 segments. The results are shown in Fig. 14.
The solution obtained by the first greedy algorithm is included for comparison. The results
are similar. The corresponding optimal objectives Jopt are similar as well, as Jopt = 124.18
with the second greedy algorithm and Jopt = 123.03 with the first greedy algorithm (J init =
1655.21).

We end this section with a comparison between the first greedy algorithm and the sec-
ond greedy algorithm. The first algorithm from Sect. 4 optimizes the beam parameters
segmentwise. It can be applied to general beam paths and there are no restrictions on
the window. In particular it and can be used to look at specific problematic areas of the
layer being melted in order to get an understanding of how the beam parameter functions
should behave in those areas.
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The second greedy algorithm from Sect. 5 optimizes the beam parameters linewise. This
makes the second algorithm preferable in practical problems because it significantly de-
creases the dimension of the decision space; the number of lines M is much lower than the
number of segments N . In the above example, the hatch lines are fairly short, but we still
get 40 = 8M < 2N = 100 when comparing dimensions of the two decision spaces. For more
realistic problems the number of segments could be orders of magnitude larger, making
the second greedy algorithm more attractive.

The potential drawback of the second algorithm is that it might be difficult to make the
initial ansatz for the beam parameter functions since they depend on the beam path (and
secondary path). However, this is where the first algorithm can be utilized to give an initial
estimate that shows the behavior of the desired beam parameters. This approach is what
enabled us to choose the beam parameter functions in (9). For the future, we imagine the
development of a database of parameter functions that have been generated for different
melting scenarios and that can be shared and used in other, more detailed models.

7 Conclusions
We have formulated an optimization scheme for controlling the heat conduction during
the melting process in powder-bed-based additive manufacturing. The scheme is efficient
because it exploits that the melt pool is local to the beam and shows good capabilities
despite several simplifications. The current choice of objectives prioritizes speed since it
only requires temperature evaluations on lines rather than in entire volumes. The scheme
should be useful for studying problematic areas of the melting process where particular
care needs to be put into the choice of beam parameters.

The optimization scheme relies on a greedy algorithm. Two versions of a greedy algo-
rithm have been presented and applied in this paper. The first one carries out optimiza-
tion segmentwise, which makes it applicable to many types of beam paths. The second
one carries out optimization linewise, which can significantly reduce the dimension of the
decision space. While the two algorithms are similar, they serve different purposes and we
have detailed how they can be combined to improve process control.

The examples considered in this paper are fairly small. For more realistic problems the
number of segments could be orders of magnitude larger. By design, the greedy algorithm
becomes more attractive as the total amount of segments in the beam path increases; the
division of the global problem (6) into subproblems (7) becomes more beneficial, relatively
speaking, as N (and M) increases. Furthermore, the examples are purely numerical. It
is currently difficult to compare the results in Sect. 6 with experiments because existing
machines lack the functionality required to match our numerical results. Because of this, a
crucial next step is to implement the necessary code in the machine such that experimental
validation becomes possible. Experiments are also needed for the generation of effective
parameters; the analytic model is very simple and since it contains few parameters, they
need to be carefully fit against experiments.

The optimization method also needs to be complemented with different types of testing.
It requires effective reference temperatures umelt, usurf . Furthermore, the weights and the
secondary path Cwd need to be carefully chosen. Work related to this kind of testing has
not been detailed here.
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