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Abstract
A stochastic impulse control problem with imperfect controllability of interventions is
formulated with an emphasis on applications to ecological and environmental
management problems. The imperfectness comes from uncertainties with respect to
the magnitude of interventions. Our model is based on a dynamic programming
formalism to impulsively control a 1-D diffusion process of a geometric Brownian
type. The imperfectness leads to a non-local operator different from the many
conventional ones, and evokes a slightly different optimal intervention policy. We
give viscosity characterizations of the Hamilton–Jacobi–Bellman Quasi-Variational
Inequality (HJBQVI) governing the value function focusing on its numerical
computation. Uniqueness and verification results of the HJBQVI are presented and a
candidate exact solution is constructed. The HJBQVI is solved with the two different
numerical methods, an ordinary differential equation (ODE) based method and a
finite difference scheme, demonstrating their consistency. Furthermore, the resulting
controlled dynamics are extensively analyzed focusing on a bird population
management case from a statistical standpoint.

Keywords: Imperfect impulse control; Population dynamics;
Hamilton–Jacobi–Bellman quasi variational inequality; ODE-based method; Finite
difference scheme

1 Introduction
Balancing costs and benefits is essential for successful environmental and ecological man-
agement [1, 2]. Harvesting invasive species requires measuring invasion dynamics, eval-
uating costs of control efforts, and tracking invasion damages [3]. Cooperative lake eu-
trophication management considers the costs for water quality improvement and their
benefits under social pressure [4]. Transboundary pollution problems are regional prob-
lems where the pollution mitigation policy is critically affected by the costs and benefits
evaluation [5]. Smith et al. [6] discussed uncertainties in wildlife management focusing on
problems related to waterbird.

Stochastic optimal control [7] is a central mathematical concept for modeling, ana-
lyzing, and controlling stochastically-driven system dynamics. Its application areas are
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widely distributed in both science [8, 9] and engineering [10, 11]. One effective way for
solving a stochastic optimal control problem is to derive the optimality equation, often
called Hamilton–Jacobi–Bellman (HJB) equation, from which we can construct the opti-
mal control [12, 13]. The optimality equations are solved analytically in simple problems
[7, 13, 14], while they must be approximated in complex problems using numerical meth-
ods [15–17]. Management problems related to environment and ecology, especially those
on population dynamics that are inherently stochastic [18], are the ones that the stochastic
control theory can handle. Biological resource exploitation considering renewal dynamics
[19], invasive and nuisance species management [20–22], and ecosystem and biodiversity
management [23, 24] are such examples.

Management problems of population dynamics through harvesting by human have been
efficiently described with the impulse control formalism [7] whose control variables are
the timing and amount of harvesting. Impulse control models have been applied to various
problems, such as predator-prey population management [25], fishery resources manage-
ment [26], aquaculture operation [27], tree harvesting [28, 29], and waterbird management
[30]. Deep mathematical analysis of the impulse control models of population dynamics
and related models have been carried out [31, 32]. Other important industrial problems,
such as gene regulation [33] and satellite control [34, 35], have been considered with the
impulse control as well.

Models based on the impulse control have thus been attractive mathematical tools for
management of population dynamics. However, to the best of the authors’ knowledge,
they lack the important fact that the impacts of interventions on the population dynamics
are not always realized as planned by the decision-maker, but are often uncertain as seen
in the field survey results [36]. Loosely speaking, the same effort of interventions does not
always lead to the same impacts on the population dynamics. Korn [37] considered an
imperfect impulse control problem of diffusion processes, and Helmes et al. [38] gener-
alized it in an abstract manner for continuous-time Markov processes. Considering the
uncertainty, namely imperfectness of interventions, is a natural policy in environmental
and ecological management. However, such a mathematical approach has not been made
so far. Impulse control models in other research areas [39–41] also do not handle cases
where the impulsive interventions have uncertain impacts. This research background mo-
tivates us to formulate and analyze an impulse control problem of population dynamics
subject to imperfectness interventions.

The objectives of this paper are formulation and analysis of an impulse control problem
of population dynamics subject to imperfect interventions, focusing on its application to
a recent waterbird management problem [21, 30]. Our model is based on Korn [37], but
considers a specific problem where a deeper mathematical and numerical analysis are pos-
sible. In addition, our contributions include derivation of a candidate exact solution and
numerical computation of the stochastic control problem. A 1-D stochastic differential
equation (SDE) describes the population dynamics in a habitat. The population is regu-
lated through costly and imperfect impulsive interventions. Optimizing the interventions
is achieved through minimization of a performance index considering both costs and ben-
efits of the interventions. An application of the dynamic programming principle to the
system dynamics and the performance index leads to the optimality equation as a non-
linear complementary problem called the Hamilton–Jacobi–Bellman Quasi Variational
Inequality (HJBQVI) [7]. The HJBQVI has a different non-locality from the conventional
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ones due to the imperfectness of the interventions. This gives rise to an optimal policy
having a slightly more complicated form than the conventional ones. We give viscosity
characterizations of the (HJBQVI) [42, 43] and that uniqueness and verification results
hold true for the HJBQVI. A candidate exact solutions is constructed analytically, and a
system of nonlinear equations governing its unknown coefficients is derived. Validity of
the candidate exact solution is checked through comparison with numerical solutions gen-
erated by a steady counterpart of a formally first-order finite difference scheme [44], and a
sharper convergence estimate against our HJBQVI is obtained. Optimally controlled pop-
ulation dynamics is extensively analyzed as well from a statistical standpoint. Our model
is relatively simple, but potentially serves as a foundation for analysis of imperfect impulse
control problems. Our contribution is rather from an engineering side but contains a new
application of the impulse control.

The rest of this paper is organized as follows. In Sect. 2, we present the impulse con-
trol model and derives the HJBQVI. Mathematical analysis results on the value function,
HJBQVI, and the controlled dynamics are presented in Sect. 3. In Sect. 4, the HJBQVI is
solved numerically by two different methods, and we see that their results agree well with
each other. Sensitivity analysis of the optimal control and the controlled dynamics is car-
ried out in this section as well. Finally, in Sect. 5, we summarize the results of this paper
and present our future perspectives. Proofs of Propositions, which are a bit technical, are
placed in the Appendix.

2 Mathematical model
An SDE for describing single-species population dynamics with imperfect impulsive har-
vesting is presented, and the performance index to be minimized through choosing har-
vesting policies is formulated. The HJBQVI of the present optimal control problem is fi-
nally derived. Our mathematical formulation is based on Korn [37], but handles a new
specific problem related to ecological and environmental management.

2.1 Stochastic differential equation
The time is denoted as t. A 1-D standard Brownian motion defined on a complete proba-
bility space is denoted as Bt at time t [7]. A 1-D SDE governs an adapted càdlàg stochastic
process (Xt)t≥0 representing the population. Let τi (i = 0, 1, 2, . . . , τ0 = 0) be the time at
which the intervention is performed to harvest the population. Without significant loss of
generality, we assume that the sequence {τi}i=0,1,2,... is increasing. The amount of popula-
tion harvested at the time τi is denoted as ζi with 0 < ζi ≤ Xτi– (i ≥ 1) and ζ0 = 0. The couple
of sequences η = {τi, ζi}i=0,1,2,..., which is called policy, is optimized so that a performance
index is minimized.

We are interested in an imperfect impulse control problem in which the harvesting is not
always realized as planned by the decision-maker, the manager of the population, but may
be perturbed stochastically. Let Z = {zi}i=0,1,2,... be a sequence of i.i.d stochastic variables
valued in a compact set S = [a, b] with 0 < a < b ≤ 1 having the probability density function
(PDF) q. Z = {zi}i=0,1,2,... is independent from (Bt)t≥0. The decision-maker can know the
value of zi just after the harvesting at τi.

Remark 1 The assumption 0 < a < b ≤ 1 means that over-harvesting such that the popu-
lation is harvested more than that planned by the decision-maker does not occur. In this
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sense, the present model is more pessimistic than the conventional impulse control mod-
els with perfect interventions.

A policy η is called admissible if it complies with the following conditions, which are
natural requirements to well-pose the problem (see, Definition 2.1 of Korn [37]):

The conditions of admissible policy

τ0 = 0 and ζ0 = 0, (1)

0 ≤ τi ≤ τi+1, 0 < ζi+1 ≤ X(τi+1)–, a.s., i ≥ 0, (2)

τi is a stopping time with respect to the filtration generated by

σ
{

Xs–, (τn, ζn, zn), n < i, s ≤ t
}

,
(3)

ζi is measurable with respect to the filtration generated by σ
{

Xτn–, (τn, ζn, zn), n < i
}

,
(4)

Pr
[

lim
i→∞ τi ≤ T

]
= 0, ∀T ∈ [0,∞), (5)

E

[ ∞∑

i=1

e–δ̄τi (1 + ζi)

]

< +∞ for a sufficiently large δ̄ > 0, (6)

Xt ≥ 0, a.s. t ≥ 0. (7)

Here, Pr[·] and E[·] present the probability and expectation, respectively. The collection
of all admissible policies, namely policies complying with (2) through (7), is denoted as A.
This set depends on X0–, and is denoted as AX0– when necessary. Here, Xt– is the left-limit
of X at time t.

For each η ∈A, the SDE governing (Xt)t≥0 is set as

⎧
⎨

⎩
dXt = Xt(μdt + σ dBt), τi ≤ t < τi+1,

Xτi = Xτi– – ziζi,
(8)

subject to an initial condition X0– = x ≥ 0, where the fluctuation term σXt dBt is in the
Itô’s sense. Here, μ > 0 is the intrinsic growth rate and σ > 0 is the stochastic growth rate
modulating temporal fluctuation involved in the dynamics [21]. Since we are interested in
controlling the population through harvesting, assume 2μ > σ 2 so that Xt → +∞ a.s. as
t → +∞ if there is no intervention [21]. This condition is utilized in the statistical analysis
of Sect. 3.3. Due to the global Lipschitz continuity of the coefficients of the SDE (8), it
admits a unique non-negative solution in a path-wise sense in each τi ≤ t ≤ τi+1 when τi <
τi+1. In addition, the SDE (8) admits a unique non-negative solution in a path-wise sense
global in time since Xτi = Xτi– – ziζi ≥ 0. The second line of (8) means that the decision-
maker choses ζi based on Xτi– . Due to the uncertain perturbation zi not controllable by the
decision-maker, the realized state transition at the time τi is Xτi– → Xτi– – ziζi. We assume
that the decision-maker knows the PDF q. He/she thus wants to decide a policy η ∈A that
can minimize a performance index under the imperfectness of harvesting.
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2.2 Performance index
Following the previous research of controlling population dynamics [21, 30], the perfor-
mance index J = J(x;η) (x ≥ 0, η ∈ Ax) is the expected net cost depending on the initial
condition:

J(x;η) = E

[∫ ∞

0
e–δs(–RXM

s + rXm
s

)
ds +

∞∑

i=1

e–δτi K(ζi)

]

(9)

with

K(ζ ) = k1ζ + k0, ζ > 0 (10)

and

0 < M < 1 < m ≤ 2, (11)

where δ > 0 is the discount rate, R, r, M and m are the positive constants. In (10), K(ζ ) is
the cost of harvesting with the amount of ζ > 0, where k1ζ with k1 > 0 is the proportional
cost and k0 > 0 is the fixed cost incurred regardless of ζ .

The performance index J in (9) consists of the two terms: the cumulative total disutility
(first term, the integral) caused by the existence of the population and the total cost of
harvesting the population (second term, the sum). In the first term, –RXM

s represents the
ecological utility provided by the population, and rXm

s represents the disutility caused by
the population [21]. The negativity of the first term is due to measuring the cost to be
positive in the present model. The sum –RXM

s + rXm
s is unimodal and convex with respect

to Xs ≥ 0, and is bounded from below by a negative constant as

–RXM
s + rXm

s ≥ –r
m – M

M

(
MR
mr

) m
m–M

if Xs ≥ 0. (12)

The relationship (11) means that the rate of increase of the disutility caused by the popula-
tion is higher than that of the utility provided by the population. The condition 0 < M < 1
in (11) means that the ecosystem services provided by the population [45, 46] drastically
change between the states that the population exists (Xs > 0) and that the population does
not exist (Xs = 0). The assumption m ≤ 2 is to guarantee a square-integrability of the term
rXm

s in the performance index.
As in the conventional impulse control problems, we assume that δ is sufficiently large

so that J is bounded [47–49]. To guarantee this, we assume

δ > mμ +
1
2

m(m – 1)σ 2. (13)
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In fact, by (13), we obtain

E
[∫ ∞

0
e–δs(–RXM

s + rXm
s

)
ds

]

≤ E
[∫ ∞

0
e–δsrXm

s ds
]

≤ rE
[∫ ∞

0
e–δs(xe(r– σ2

2 )s+σBs
)m ds

]

= Axm, A =
r

δ – mμ – 1
2 m(m – 1)σ 2

> 0

(14)

for arbitrary η ∈A. We also have

E
[∫ ∞

0
e–δs(–RXM

s + rXm
s

)
ds

]
≥ –r

m – M
δM

(
MR
mr

) m
m–M

(15)

for arbitrary η ∈A because the function –RxM + rxm (x ≥ 0) is convex and has a minimum
value.

2.3 Value function and HJBQVI
The value function � = �(x) is the minimized performance index with respect to η ∈A:

�(x) = inf
η∈A

J(x;η) = J
(
x;η∗), x ≥ 0, (16)

where η∗ = {τ ∗
i , ζ ∗

i }i=0,1,2,... ∈ A minimizing J is referred to as the optimal policy. This �

is bounded from below and locally bounded from above, and is well-defined. These are
because, firstly

�(x) ≥ –r
m – M

δM

(
MR
mr

) m
m–M

+ inf
η∈A

E

[ ∞∑

i=1

e–δτi K(ζi)

]

≥ –r
m – M

δM

(
MR
mr

) m
m–M

, x ≥ 0.

(17)

Secondly, with the null control η = η0 such that τi = +∞ (i ≥ 1), which is the control with
no intervention, (Xt)t≥0 is a classical geometric Brownian motion. Then, we get

�(x) ≤ E
[∫ ∞

0
e–δs(–RXM

s + rXm
s

)
ds

]

≤ BxM + Axm, B = –
R

δ – Mμ – 1
2 M(M – 1)σ 2

< 0.
(18)

In addition, �(0) = 0 because Xt = 0 (t ≥ 0) if x = 0 and only the null control η0 is admissible
in this case. The boundedness results of � are sharpened later.

We assume the following recursion inspired from the dynamic programming princi-
ple of the conventional impulse control problems [7]. Here, τ is any finite stopping time
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adapted to a natural filtration F generated by (Bt)t≥0 and {zi}i=1,2,3,...:

�(x) = inf
η∈A

E

[∫ τ

0
e–δs(–RXM

s + rXm
s

)
ds +

∞∑

i=1,τi≤τ

e–δτi K(ζi) + e–δτ�(Xτ )

]

, (19)

which formally leads to the HJBQVI governing �:

max
{
L� + RxM – rxm,� – M�

}
= 0, x > 0 (20)

with the degenerate elliptic operator L and the non-local intervention operator M

LW = δW – μx
dW
dx

–
1
2
σ 2x2 d2W

dx2 (21)

and

MW = sup
0<ζ≤x

[
K(ζ ) +

∫ b

a
W (x – zζ )q(z) dz

]
, (22)

respectively, for generic regular W = W (x). The boundary condition for the HJBQVI is
�(0) = 0. Growth speed of (viscosity) solutions to (20) should be at most polynomial by
(17) and (18).

The left part in “max” operator in the HJBQVI (20) corresponds to the situation where
no intervention should be performed, while the right part corresponds to the situa-
tion where the intervention should be performed immediately. A difference between the
present and conventional HJBQVIs is that the present non-local operator M involves the
effect of uncertainty induced by the uncertainties Z, while the conventional ones do not
and have the non-local terms like MW = sup0<ζ≤x[K(ζ ) + W (x – ζ )] in which no uncer-
tainty is considered [30, 39–41].

3 Mathematical analysis
3.1 Value function
Several key mathematical properties of the value function � are analyzed, from which we
show that it is a viscosity solution to the HJBQVI (20). A comparison result for a modified
problem that has important implications in numerical computation is also presented.

The first result concerns local boundedness of � as an extension of the discussion in the
previous section.

Proposition 1

max

{
–r

m – M
δM

(
MR
mr

) m
m–M

, BxM
}

≤ �(x) ≤ BxM + Axm, x ≥ 0. (23)

In addition, limx→+0 �(x) = �(0) = 0.

The following proposition gives a key inequality characterizing the value function �,
which is effectively utilized in a proof of viscosity property of �.
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Proposition 2

�(x) ≤M�(x), x ≥ 0. (24)

In this paper, we assume that the value function � is continuous, which is true in the
problems without uncertainties in the interventions [30, 50, 51]. The continuity is also
justified numerically as the computational results with a finite difference scheme suggest
(see, Sect. 4). The following continuity result supports the definitions of viscosity solutions
to the HJBQVI (20) presented later. Actually, the candidate of exact solution, which turns
out to be the value function under certain conditions, is continuous.

Proposition 3 There exists a constant C > 0 such that

�(x) – �(y) ≤ C
(
(x – y)M + xm–1(x – y)

)
, 0 ≤ y ≤ x. (25)

In addition, �(x) is continuous at x = 0.

Remark 2 An obstacle to derive the other side of the inequality is the dependence of the
set Ax of admissible controls on x. Notice that this problem has not been encountered
in the conventional research such as Guo and Wu [48] because their admissible sets are
independent from the state variables.

3.2 HJBQVI and optimal control
3.2.1 Viscosity property
Here, we show that the HJBQVI (20) is solvable in a weak sense. The weak solutions em-
ployed in this paper are viscosity solutions [42, 43] as appropriate weak solutions to de-
generate elliptic problems. We show that the value function � is a continuous viscosity
solution to the HJBQVI (20) under certain conditions. As noted above, hereafter we as-
sume that the value function is continuous, which is partly supported in Proposition 3.

Viscosity solutions to the HJBQVI (20) are defined as follows based on the monotonic-
ity and continuity result of non-local terms in HJBQVIs (Proposition 3 of Azimzadeh et
al. [42]) whose conditions are satisfied by our non-local operator M. In what follows the
function space of upper-semi continuous (resp., lower-semi continuous) functions valued
in a domain � is denoted as USC(�) (resp., LSC(�)). Note that the difference between a
test function and a viscosity sub-solution or a super-solution needs not be globally max-
imized or minimized because the non-local part is defined using super- or sub-solution
itself (e.g., [42, Definition 1]).

Definition 1
• Viscosity sub-solution. A function ϕ ∈ USC[0, +∞) ∩ C(0, +∞) with ϕ(0) ≤ 0 is a

viscosity sub-solution to the HJVQVI (20) if the following conditions are satisfied at
each x > 0: for any ψ ∈ C[0, +∞) ∩ C2(0, +∞) such that ϕ – ψ is locally strictly
maximized at x with ϕ(x) – ψ(x) = 0, we have

max
{
Lψ + RxM – rxm,ϕ – Mϕ

} ≤ 0. (26)
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• Viscosity super-solution. A function ϕ ∈ LSC[0, +∞) ∩ C(0, +∞) with ϕ(0) ≥ 0 is a
viscosity super-solution to the HJBQVI (20) if the following conditions are satisfied at
each x > 0: for any ψ ∈ C[0, +∞) ∩ C2(0, +∞) such that ϕ – ψ is locally strictly
minimized at x with ϕ(x) – ψ(x) = 0, we have

max
{
Lψ + RxM – rxm,ϕ – Mϕ

} ≥ 0. (27)

• Viscosity solution. A function ϕ ∈ C[0, +∞) is a viscosity solution to the HJBQVI (20) if
it is a viscosity sub-solution as well as a viscosity super-solution in the
above-mentioned sense.

The following proposition shows the viscosity property of the value function � and sup-
ports our approach of finding the optimal policy through solving the HJBQVI (20).

Proposition 4 The value function � is a viscosity solution to the HJBQVI (20).

Uniqueness of solutions to our HJBQVI is an important issue as well, from which we
can guarantee unique existence of viscosity solutions under certain assumptions, and also
convergence of numerical solutions generated by an appropriate discretization method.
An interest, especially in numerical computation, is uniqueness of the localized HJBQVI:

max
{
L� + RxM – rxm,� – M�

}
= 0, 0 < x < Xmax, (28)

max{� – g,� – M�} = 0, x = Xmax (29)

with �(0) = 0 and a sufficiently large constant g > 0 such that g > AXm
max. Here, Xmax > 0 is a

constant to truncate the unbounded domain [0, +∞) as [0, Xmax]. This kind of localization
has been commonly used in solving degenerate elliptic problems [49, 52, 53]. Here, intro-
ducing the term � – g is from a technical reason (see, Proof of Proposition 5) to guarantee
uniqueness of the system and actually innocuous because of the estimate (23).

Following Definition 1, viscosity solutions to the localized HJBQVI are defined as fol-
lows: A difference between Definitions 1 and 2 is the boundary condition at the right-end.
(See, (31) and (33). They are absent in Definition 1.)

Definition 2
• Viscosity sub-solution. A function ϕ ∈ USC[0, Xmax] ∩ C(0, Xmax] with ϕ(0) ≤ 0 is a

viscosity sub-solution to the localized HJVQVI (28)–(29) if the following conditions are
satisfied at each x > 0: for any ψ ∈ C2[0, Xmax] such that ϕ – ψ is locally strictly
maximized at x with ϕ(x) – ψ(x) = 0, we have

max
{
Lψ + RxM – rxm,ϕ – Mϕ

} ≤ 0, 0 < x < Xmax, (30)

max{ϕ – g,ϕ – Mϕ} ≤ 0, x = Xmax. (31)

• Viscosity super-solution. A function ϕ ∈ LSC[0, Xmax] ∩ C(0, Xmax] with ϕ(0) ≥ 0 is a
viscosity super-solution to the localized HJBQVI (28)–(29) if the following conditions
are satisfied at each x > 0: for any ψ ∈ C2[0, Xmax] such that ϕ – ψ is locally strictly
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minimized at x with ϕ(x) – ψ(x) = 0, we have

max
{
Lψ + RxM – rxm,ϕ – Mϕ

} ≥ 0, 0 < x < Xmax, (32)

max{ϕ – g,ϕ – Mϕ} ≥ 0, x = Xmax. (33)

• Viscosity solution. A function ϕ ∈ C[0, Xmax] is a viscosity solution to the localized
HJBQVI (28)–(29) if it is a viscosity sub-solution as well as a viscosity super-solution.

Now, we prove uniqueness of viscosity solutions to the localized HJBQVI (28)–(29)
through a comparison argument.

Proposition 5 For the localized HJBQVI (28)–(29), any viscosity sub-solution u and any
viscosity super-solution v satisfy u ≤ v in [0, Xmax]. In particular, it admits at most one
viscosity solution in the sense of Definition 2.

Remark 3 The value function is the unique viscosity solution to the localized HJBQVI
(28)–(29) if � –M� = 0 and L� + RxM – rxm < 0 for sufficiently large x > 0. In fact, if this
holds true, then we can choose a sufficiently large Xmax such that �–M� = 0 for x > Xmax.

3.2.2 Verification
In this sub-section, we present a candidate exact solution to the HJBQVI (20). From a
management viewpoint [21, 30], we conjecture the following with some x̄ > 0:

L� + RxM – rxm = 0 and � – M� < 0 for 0 < x < x̄ (34)

and

L� + RxM – rxm < 0 and � – M� = 0 for x ≥ x̄. (35)

The point x = x̄ is a free boundary. The conditions (34) and (35) imply that the optimal
policy is of the following form, which is of course admissible, and is referred to as QVI-
control [37, 54]:

(τ0, ζ0) = (0, 0), (36)

τi = inf
{

t ≥ τi–1 : �(Xt) = M�(Xt)
}

, i ≥ 1, (37)

ζi = arg min
0<ζ≤x

{
K(ζ ) +

∫ b

a
�(x – zζ )q(z) dz

}
, i ≥ 0. (38)

From (36) through (38),we infer that the following threshold-type policy with the thresh-
old values x̄ and x (x̄ > x) is optimal for t ≥ 0 (see, Korn [37]):

(A) Xt– < x̄, then no intervention is performed.
(B) If Xt– ≥ x̄, then the intervention with the magnitude of ζ = x̄ – x(x̄) is immediately

performed (and then Xt– is actually reduced to Xt = x̄ – (x̄ – x(Xt–))z, where z is
uncertain for the decision-maker). Notice that we may have Xt ≥ x̄. Then, repeat the
first sentence of (B) until we get Xt < x̄.
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Figure 1 A sample path of the controlled population
dynamics (blue), the upper threshold x̄ (red), and the
uncertainty range [x̄ – bζ ∗(x̄), x̄ – aζ ∗(x̄)] (pink)

Notice that multiple interventions are allowed at the same time [37]. This is due to the
model simplification that assumes the time scale of interventions is much smaller than
that of the population dynamics. Here, x̄ > 0 is a constant while x(x) is a function of x > 0
and is assumed to be 0 < x(x) < x̄ (x ≥ x̄). With the two thresholds x̄ and x(x), the optimal
amount of the intervention ζ ∗ becomes

ζ ∗(x) =

⎧
⎨

⎩
x – x(x) (x ≥ x̄),

0 (x < x̄).
(39)

Figure 1 presents an image of sample paths by the above-presented threshold-type policy.
The function x(·) is the population just after the harvesting. It is related to equation (38)
in the way that ζ = x̄ – x(x) is its maximizer given x ≥ 0 under the conjectures (A)–(B). An
example of x(·) is plotted in Fig. 2 of Sect. 4.2.

Note that the conventional 1-D impulse control problems in an infinite horizon assume
constant thresholds [44, 50, 54–56], namely x̄ and x(x) are positive constants, while in ours
the latter is not a constant. If both the thresholds are constant, then (39) becomes a policy
with a constant x:

ζ ∗ =

⎧
⎨

⎩
x – x (x ≥ x̄),

0 (x < x̄).
(40)

However, later we imply that this is not always true in our model, through an exploration
of exact solutions. This difference between the conventional and our models is due to
the form of the non-local term in the HJBQVI (20). In fact, the previous model without
the uncertainty [30, 50, 51] admits a constant x. We also demonstrate through numerical
experiments that the threshold x depends on x in the present model.

The final proposition concerns optimality of the exact solution.

Proposition 6 Let φ be a viscosity solution to the HJBQVI (20) and S be a finite sub-set in
(0, +∞). Assume that φ satisfies the upper- and lower-bounds (23) and is twice continuously
differentiable except at each point of S. Assume that there is x̄ > 0 such that

Lφ + RxM – rxm = 0 and φ – Mφ ≤ 0 for 0 < x < x̄ (41)

and

Lφ + RxM – rxm ≤ 0 and φ – Mφ = 0 for x ≥ x̄. (42)
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For each given x ≥ 0, policy η ∈ A, and stopping time τ , suppose that φ(Xτ ) is uniformly
integrable and satisfies the bound (23). Then, we have

φ ≤ � in [0, +∞). (43)

In addition, if the QVI-control is admissible, then

φ = � in [0, +∞). (44)

3.2.3 Candidate of exact solutions
We try to construct a viscosity solution potentially complying with (34) and (35). Set

β =
1
2

(
1 –

2μ

σ 2 +

√(
2μ

σ 2 – 1
)2

+
8δ

σ 2

)
> 0. (45)

Let �̄ be a candidate of viscosity solutions. Firstly, we consider the case x < x̄, under which
no intervention should be performed. General solutions to

L�̄ + RxM – rxm = 0 (46)

are represented as

�̄(x) = c1xβ+ + c2xβ– + BxM + Axm (47)

with

β± =
1
2

(
1 –

2μ

σ 2 ±
√(

2μ

σ 2 – 1
)2

+
8δ

σ 2

)
, β+ > 0 and β– < 0 (48)

and constants c1 and c2. If c2 
= 0, then limx→+0 c2xβ– = ±∞ since β– < 0. Hereafter, we
write β = β+. This contradicts with Proposition 1. Therefore, c2 = 0 and thus

�̄(x) = �0(x) = cxβ + BxM + Axm, (49)

where the notations c1 = c is used and �̄(0) = 0.

Remark 4 By Proposition 1, we should have c ≤ 0.
For x ≥ x̄ where the intervention must be performed immediately, we should have

�̄(x) = M�̄(x) = inf
0≤ζ≤x

{
K(ζ ) +

∫ b

a
�̄(x – zζ )q(z) dz

}
(50)

whose right-hand side is determined based on the information in [0, x]. Therefore, theo-
retically, �̄ for x ≥ x̄ can be constructed from the left toward the right by the equation (50)
once we get �̄(x̄).

We found that the equation (50) is not analytically solvable because of its nonlinearity
and nonlocality. Nevertheless, assuming that the population is not large at some time t, as
demonstrated below, it is sufficient to solve the HJBQVI (20) for x ≤ x̄ considering x = x̄
as a free boundary:
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(a) Continuity of �̄(x) at x = x̄ (Value matching condition).
(b) Continuity of d�̄

dx (x) at x = x̄ (Smooth pasting condition).
(c) Optimality of the thresholds x̄ and x(x̄) (Optimality condition).

From the standpoint of the optimal policy constructed above, it is sufficient to have the
point value ζ ∗(x̄) but not whole ζ ∗(x)(x ≥ x̄) when the initial population x is not so large.
This is because of the rules (A)–(B) of the optimal policy with which the process (Xt)t≥0

is eventually confined in [0, x̄]. We thus only have to determine the three constants ζ ∗(x̄),
x̄, and c. For the sake of simplicity of presentations, write ζ̄ = ζ ∗(x̄). We assume that ζ ∗ is
sufficiently smooth.

Now, we derive three equations to find the three unknowns ζ̄ , x̄, and c. Assume x ≥ x̄.
By the Value matching condition (a), we get

�0(x) = K(ζ̄ ) +
∫ b

a
�̄(x – zζ̄ )q(z) dz. (51)

The optimality condition then gives the implicit governing equation of ζ = ζ ∗, if it is an
interior minimizer, as

k1 +
d

dζ

∫ b

a
�̄(x – zζ )q(z) dz = k1 –

∫ b

a

d
dx

�̄(x – zζ )zq(z) dz = 0. (52)

Namely, we have

∫ b

a

d
dx

�̄
(
x – zζ ∗)zq(z) dz = k1. (53)

The Smooth pasting condition (b) gives

d
dx

�̄(x) = k1
dζ ∗

dx
+

d
dx

∫ b

a
�̄

(
x – zζ ∗(x)

)
q(z) dz

=
(

k1 –
∫ b

a

d
dx

�̄
(
x – zζ ∗)zq(z) dz

)
dζ ∗

dx
+

∫ b

a

d
dx

�̄
(
x – zζ ∗(x)

)
q(z) dz.

(54)

Combining (53) and (54) leads to

d
dx

�̄(x) =
∫ b

a

d
dx

�̄
(
x – zζ ∗(x)

)
q(z) dz. (55)

Now, substituting x = x̄ into (51), (53), and (55) with the Optimality condition (c) gives the
system of three nonlinear equations to find the three unknowns ζ̄ , x̄, and c:

�0(x̄) = K(ζ̄ ) +
∫ b

a
�0(x̄ – zζ̄ )q(z) dz, (56)

∫ b

a

d
dx

�0(x̄ – zζ̄ )zq(z) dz = k1, (57)

and

d
dx

�0(x̄) =
∫ b

a

d
dx

�0(x̄ – zζ̄ )q(z) dz, (58)
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where

d
dx

�̄(x̄) =
d

dx
�0(x̄) = cβx̄β–1 + BMx̄M–1 + Amx̄m–1. (59)

Remark 5 We can expect an asymptotic relationship �(x) ∼ dk1x with a constant d > 0
for x sufficiently large. In fact, substituting �(x) = dk1x into (53) leads to

k1 =
∫ b

a
zq(z)dk1 dz, (60)

namely

d =
(∫ b

a
zq(z) dz

)–1

(≥ 1). (61)

This is consistent with �(x) = M�(x) for x sufficiently large because of

M�(x) ∼ k1ξ
∗ +

∫ b

a
dk1

(
x – ζ ∗z

)
q(z) dz = dk1x (62)

by (61). From a practical viewpoint, (61) means that the increasing rate d with respect to
the population x is not smaller than k1 because of the uncertainty of the intervention im-
pacts. We get d = 1 if and only if the interventions are perfect (a = b = 1 and q is a Dirac’s
delta concentrated at z = 1). Therefore, the theoretical result implies that imperfect inter-
ventions are always less efficient than the perfect ones, and the efficiency can be measured
by d. The modulation of the increasing rate is the inverse of the mean value of the uncer-
tainty Z by (61). The coefficient d is determined by the moment of q. The result presented
above is consistent with our intuition that the intervention is n (> 1) times less efficient if
its impact is expected to be n times smaller than that without the uncertainty.

3.2.4 Empirical numerical approach
The nonlinear equations (56) through (58) seem to be not analytically solvable and their
numerical approximation in general may not be an easy task. We consider a simplified
case where we can, at least empirically, find the unknowns ζ̄ , x̄, and c. A similar numerical
approach has been successfully applied to finding the coefficients in the exact solution to
an HJBQVI associated with a problem with a perfect intervention [51].

We consider the uniform distribution q(z) = 1
b–a (a ≤ z ≤ b). In this case, by a straight-

forward calculation, we get

∫ b

a

d
dx

�0(x̄ – zζ̄ )q(z) dz =
1

ζ̄ (b – a)
(
�0(x̄ – aζ̄ ) – �0(x̄ – bζ̄ )

)
(63)

and

∫ b

a

d
dx

�0(x – zζ̄ )zq(z) dz

=
1

ζ̄ (b – a)
(
a�0(x̄ – aζ̄ ) – b�0(x̄ – bζ̄ )

)
+

1
ζ̄ (b – a)

∫ b

a
�0(x̄ – zζ̄ ) dz.

(64)
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Then, (57) and (58) are rewritten as

k1ζ̄ (b – a) = a�0(x̄ – aζ̄ ) – b�0(x̄ – bζ̄ ) +
∫ b

a
�0(x̄ – zζ̄ ) dz (65)

and

d
dx

�0(x̄) =
1

ζ̄ (b – a)
(
�0(x̄ – aζ̄ ) – �0(x̄ – bζ̄ )

)
, (66)

respectively. The three unknowns are explored through the following empirically-derived
system containing the two ODEs and a nonlinear equation whose equilibrium satisfy (56),
(65), and (66):

dx̄
dρ

= x̄γ

[
�0(x̄ – bζ̄ ) – �0(x̄ – aζ̄ ) + ζ̄ (b – a)

d
dx

�0(x̄)
]

, (67)

dc
dρ

= k0 + k1ζ̄ +
∫ b

a
�0(x̄ – zζ̄ )q(z) dz – �0(x̄), (68)

ζ̄ =
1

k1(b – a)

[
a�0(x̄ – aζ̄ ) – b�0(x̄ – bζ̄ ) +

∫ b

a
�0(x̄ – zζ̄ ) dz

]
, (69)

where γ > 0 is a constant and the coefficient x̄γ in the right-hand side of (67) is chosen
for the sake of empirical computational stability of the discretized system. Here, ρ ≥ 0
is an auxiliary time variable to parameterize ζ̄ , x̄, and c, and the ODEs (67) and (68) are
integrated with respect to ρ > 0 with (69) starting from an initial guesses (x̄, ζ̄ , c)τ=0. This
is carried out in a standard forward Euler manner. Set the small increment �ρ > 0 of ρ

and a variable at ρ = k�ρ (k = 0, 1, 2, . . .) is denoted with the subscript (k). For k ≥ 0, we
discretize (67) through (69) as

ζ̄(k+1) =
1

k1(b – a)

[
a�0,(k)(x̄(k) – aζ̄(k)) – b�0,(k)(x̄(k) – bζ̄(k))

+
∫ b

a
�0,(k)(x̄(k) – zζ̄(k)) dz

]
,

(70)

x̄(k+1) = x̄(k) + x̄γ

(k)

[
�0,(k)(x̄(k) – bζ̄(k+1)) – �0,(k)(x̄(k) – aζ̄(k+1))

+ ζ̄(k+1)(b – a)
d

dx
�0,(k)(x̄(k))

]
�ρ,

(71)

c(k+1) = c(k) +
(

k0 + k1ζ̄(k) +
∫ b

a
�0,(k)(x̄(k) – zζ̄(k))q(z) dz – �0,(k)(x̄)

)
�ρ, (72)

where �0,(k) is �0 with c = c(k). From a stability viewpoint of discretized ODEs [57], we
expect that the discretized system (70)–(72) can be solved numerically with a small �ρ > 0.

Remark 6 We observed that convergence of solutions to (70)–(72) depends on the initial
guess, implying its sensitivity against the initial guess. At the current stage, we have neither
unique solvability nor stability results on the continuous system (67)–(69) and discretized
system (70)–(72). Therefore, we utilize the ODE-based method as a tool to validate the
finite difference scheme because the latter is more computationally stable for our problem.
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Remark 7 Construction of the system is based on an empirical approach. Yaegashi et
al. [51] addressed this issue for an impulse control problem with perfect interventions.
Fortunately, their ODE-based method can compute the unknown coefficients as a locally
asymptotically stable equilibrium point of a system. However, such a result has not been
found in the present case.

3.3 Statistics of controlled state dynamics
From a practical point of view, analyzing statistics of the optimally-controlled population
dynamics is as important as finding the optimal intervention policy. Under the conjectured
optimal policy in the previous sub-sections, we can focus on the dynamics in the interval
[0, x̄]. The threshold-type optimal control established in the previous section is assumed
in what follows.

Firstly, we derive the statistical moments of the intervals τi+1 – τi between each suc-
cessive intervention. This is a stochastic variable of interest in applications, because the
frequency of interventions crucially affects cost-effectiveness of the population manage-
ment. The present problem is a stochastic optimal control of a time-homogenous process
in an infinite horizon, and thus the statistical properties of the optimally controlled dy-
namics can be studied through stationary distributions.

The first hitting time τx of the process (Xt)t≥0 (t > 0) with X0– = x ∈ (0, x̄] is defined as

τx = inf
{

t > 0 | Xt = x̄, X0– = x ∈ (0, x̄]
}

. (73)

The Laplace’s transformation method (Appendix of Chap. 9, Dixit et al. [58]) gives the
following exponential formula because our underlying process is a geometric Brownian
motion:

Ex[e–θτx
]

=
(

x
x̄

)u

(74)

with

λ =
2μ

σ 2 – 1(> 0) and u =
1
2

√

λ2 +
8θ

σ 2 –
1
2
λ (75)

for each θ > 0, where Ex is the conditional expectation on X0– = x. The formula of the
probabilistically distributed x follows directly from (74) as

E
[
e–θτ

]
=

∫ b

a
g(z)uq(z) dz with g(z) = 1 –

zζ̄
x̄

, (76)

where τx is rewritten as τ , which is now the first hitting time to the threshold x̄ just after
an intervention whose exertion time is 0. We have

∂u
∂θ

=
2
σ 2

(
λ2 +

8θ

σ 2

)–1/2

and
∂2u
∂θ2 = –

8
σ 4

(
λ2 +

8θ

σ 2

)–3/2

(77)

and thus

u|θ→+0 = 0,
∂u
∂θ

∣∣∣∣
θ→+0

=
2

σ 2λ
, and

∂2u
∂θ2

∣∣∣∣
θ→+0

= –
8

σ 4λ3 . (78)



Yoshioka and Yaegashi Journal of Mathematics in Industry           (2021) 11:16 Page 17 of 34

By (77) and (78), we get

E[τ ] = –
∂

∂θ
E
[
e–θτ

]
∣∣∣∣
θ→+0

= –
2

σ 2λ

∫ b

a
q(z) ln g(z) dz (79)

and

E
[
τ 2] =

4
σ 2λ

E[τ ] +
4

σ 4λ2

∫ b

a
q(z) ln2 g(z) dz. (80)

The equation (79) gives the formula for the mean E[τ ], and the formula for the variance
E[τ 2] – (E[τ ])2 immediately follows from (79) and (80). The standard deviation is then ob-
tained as Std[τ ] =

√
E[τ 2] – (E[τ ])2. The integrals appearing in (79) and (80) are calculated

exactly or evaluated numerically depending on the PDF q. Higher order moments of τ can
also be computed based on (76) if necessary.

Another statistical index of interest is the mean harvested amount per unit time [21],
which is denoted as H . This quantity can be simply estimated as

H =
ζ̄

∫ b
a zq(z) dz

E[τ ]
, (81)

where the numerator of the right-hand side is the mean unit-time harvesting. Validity of
this formula is examined in the next section with a Monte-Carlo method.

4 Numerical computation
The HJBQVI (20) is computed with the two different numerical methods, which is the
ODE-based method using (70) through (72) and a verified finite difference scheme having
a formally first-order accuracy [44]. In addition, the statistical indices of the controlled
state dynamics are calculated.

4.1 Parameter setting
A target species of the model application is the great cormorant Phalacrocorax carbo,
which is one of the most widespread waterfowls found over the world whose population
management has been serious ecological issues because of their excessively high preda-
tion to fishery resources [21, 59, 60]. They have indirect environmental impacts through
modulating nutrient cycles around their habitat [61] through complex mechanisms. Nev-
ertheless, exterminating the bird is not be the optimal solution because they are not alien
species in many cases. Their population dynamics would present seasonal characteristics;
however, from a practical modeling viewpoint, the dynamics can be effectively considered
to be time-homogenous with the deterministic and stochastic growth as modelled in the
SDE (8). Human interventions to suppress their population has been carried out in many
ways, and the most popular one is gun-shooting [21, 36].

In this paper, the nominal model parameter values are specified as follows. For the popu-
lation dynamics, we set μ = 0.50 (1/year) and σ = 0.50 (1/year1/2), considering the param-
eter estimation result in Japan [21] where μ = O(10–1) (1/year), σ = O(10–1) (1/year1/2),
and 2μ > σ 2. The other parameters are specified as follows: δ = 2 (1/year), m = 2, M = 0.5,
r = 0.005, R = 10, k0 = 0.05 (1/year), k1 = 0.15 (1/year), a = 0.2 and b = 1. The uniform
distribution q(z) = 1

b–a (a ≤ z ≤ b) is assumed. The specified range [a, b] is reasonably
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consistent with the survey result that the total number of harvested bird population at
one harvesting event had different orders (O(100) to O(102)) among hunters [36].

The computational domain for the finite difference scheme is [0, Xmax] with Xmax = 100,
which is discretized into 1000 cells and 1001 nodes. The threshold Xmax is determined so
that Xmax > x̄ in what follows based on preliminary numerical experiments. These param-
eter values and the computational resolution are used unless otherwise specified.

4.2 Value function and optimal policy
The HJBQVI (20) is discretized with the finite difference scheme [44] that has been
found to be monotone, stable, consistent, and thus convergent in the viscosity sense
under the strong comparison principle [62]. Proposition 5 supports applicability of the
present scheme to discretization of the HJBQVI (20) in the truncated domain, the lo-
calized HJBQVI (28)–(29). Through comparing the computational results between the
ODE-based method and the finite difference scheme, we examine validity of the func-
tional form of the exact solution to the HJBQVI (20) conjectured in the previous section.
Notice that the two numerical methods are based on fundamentally different concepts;
the ODE-based method relies on the conjecture of the solution shape and the matching
conditions at x = x̄, while the finite difference scheme on a direct discretization of the
localized HJBQVI (28)–(29). The scheme does not a priori use functional shapes of solu-
tions in the computational domain. In the scheme, x̄ is detected between mid-points of
each successive cells.

Table 1 shows a summary of comparison results between the numerical solution with
the ODE-based method (�ρ = 0.00005) and those with the finite difference scheme against
different computational resolution. The auxiliary temporal integration is terminated when
the absolute difference of the computed a, x̄, ξ̄ between each successive steps become
smaller than 10–13. The ODE-based method computes x̄ = 59.392, ξ̄ = 19.262, and c =
–0.0001307, which are consistent with the assumptions x̄ > ξ̄ and c < 0. Here, the value
function computed with the ODE-based method is referred to as the numerical value
function for the sake of brevity. In the table, the error (Er) between the numerical value
function and each numerical solution computed with the finite difference scheme is the
maximum error observed at vertices in 0 < x < x̄. The maximum error in each numerical
solution was observed near x = 0 at which the value function is not differentiable in the

Table 1 Summary of comparison results between the ODE-based method and finite difference
scheme. The total number of cells, cell size, the error Er, x̄, and ξ̄ by the finite difference scheme are
presented. With the ODE-based method, we have x̄ = 59.392 and ξ̄ = 19.262

Total number of cells Cell size h Er x̄ ξ̄

100 1.000 1.252E–02 58.500 18.500
200 0.500 8.924E–03 59.250 19.250
300 0.333 7.301E–03 59.167 19.167
400 0.250 6.327E–03 59.375 19.375
500 0.200 5.661E–03 59.300 19.100
600 0.167 5.170E–03 59.250 19.083
700 0.143 4.787E–03 59.357 19.214
800 0.125 4.478E–03 59.313 19.188
900 0.111 4.222E–03 59.389 19.278
1000 0.100 4.006E–03 59.350 19.250
1500 0.067 3.271E–03 59.367 19.233
2000 0.050 2.833E–03 59.375 19.275
3000 0.033 2.313E–03 59.383 19.250
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Figure 2 The numerical value function computed by
the ODE-based method (green line) and the numerical
solution by the finite difference scheme with 1,000
cells (blue line). The left vertical axis represents their
values. The values of dashed vertical lines are x = x̄ – ξ̄

and x = x̄ from the left to the right, respectively. The
lower-threshold x = x(x) (x̄ ≤ x ≤ Xmax) is also plotted in
the figure (red line). The right vertical axis represents its
value

Figure 3 The error Er and the cell size h: circles
represent the computational results and the curve
represents the least-squares best-fitted curve

classical sense because of the term BxM . Table 1 demonstrates that the numerical solu-
tions with the finite difference scheme converge toward the numerical value function as
the computational resolution increases. Convergence of x̄ and ξ̄ is not monotone, but it
seems that the results between the two methods become closer as the resolution of the
finite difference scheme becomes fine.

Figure 2 presents the numerical value function (0 ≤ x ≤ x̄) and the numerical solution to
the finite difference scheme with 1000 cells (0 ≤ x ≤ Xmax). They agree well with each other
as observed in the figure. Furthermore, the numerical solution does not contain spurious
oscillations, demonstrating its satisfactory ability to handle the non-linear and non-local
problem. The computed solution shape is consistent with that assumed in Proposition 6.
The lower-threshold x = x(x) (x̄ ≤ x ≤ Xmax), which equals x̄–ξ ∗(x), is also plotted in Fig. 2,
showing that x(x) clearly depends on the population x as suggested in Sect. 3 where a dif-
ference between the intervention operators of the conventional and present model has
been notified. Figure 3 shows that the convergence of the numerical solutions toward the
value function is close to O(h1/2), where h represents the cell size. In fact, the least-squares
best-fitted curve is Er = 0.0126 × h0.497. This convergence speed agrees with that of the
other monotone numerical schemes for HJBQVIs in impulse and related control problems
[62, 63]. Furthermore, we examine validity of Remark 5. We get d�

dx = dk1 = 0.250 the-
oretically, while the finite difference approximation leads to �|x=Xmax –�|x=0.999Xmax

0.001Xmax
= 0.251,

demonstrating an agreement between the theoretical and numerical results. In summary,
the results with both numerical methods are in good agreement with each other. They
agree well with the theoretical results as well. In what follows, parameter dependence of
the optimal policy with the finite difference scheme is analyzed.

Table 2 presents the parameter dependence of the thresholds x̄, x = x(x̄), and the amount
of harvesting ξ̄ = x̄–x. Figures 4 through 12 graphically present the parameter dependence
of x̄, x = x(x̄), and ξ̄ on the parameters μ, σ , δ, r, R, k0, k1, a, and b, respectively. The com-
putational results in Table 2 and Figs. 4 through 12 demonstrate monotone dependence
of x̄, x, and ξ̄ on the model parameters. The computational results suggest that increas-
ing the stochasticity σ or the deterministic growth rate μ leads to a larger threshold values
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Table 2 Parameter dependence of the thresholds x̄, x = x(x̄), and the amount of harvesting ξ̄ = x̄ – x.
In this table, the notations “+” and “–” mean means increase and decrease of x̄, x, or ξ̄ with respect to
each parameter, respectively

Parameter Smallest value Largest value x̄ x ξ̄

μ 0.2 0.8 – – –
σ 0.1 0.7 + + +
δ 1.5 3.0 + + +
r 0.003 0.007 – – –
R 0.1 5.0 + + +
k0 0.01 0.25 + – +
k1 0.01 0.20 + + +
a 0.1 0.9 – – –
b 0.5 1.0 – – –

Figure 4 Dependence of x̄ (red), x = x(x̄) (blue), and ξ̄

(green) on μ

Figure 5 Dependence of x̄ (red), x = x(x̄) (blue), and ξ̄

(green) on σ

Figure 6 Dependence of x̄ (red), x = x(x̄) (blue), and ξ̄

(green) on δ

Figure 7 Dependence of x̄ (red), x = x(x̄) (blue), and ξ̄

(green) on r
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Figure 8 Dependence of x̄ (red), x = x(x̄) (blue), and ξ̄

(green) on R

Figure 9 Dependence of x̄ (red), x = x(x̄) (blue), and ξ̄

(green) on k0

Figure 10 Dependence of x̄ (red), x = x(x̄) (blue), and
ξ̄ (green) on k1

Figure 11 Dependence of x̄ (red), x = x(x̄) (blue), and
ξ̄ (green) on a

Figure 12 Dependence of x̄ (red), x = x(x̄) (blue), and
ξ̄ (green) on b

that potentially result in managing the dynamics with higher population. The increas-
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ing/decreasing nature of ξ̄ with respect to these parameters are contrasting, but Figs. 4
and 5 imply relatively smaller changes of ξ̄ compared with the two threshold values. The
dependence of the optimal policy on the discount rate δ and the parameters R and r for
the utility and disutility shows that the decision-maker with a longer-term perspective
maintains the population at a higher level. In addition, the decision-maker who evaluates
the utility (resp., disutility) larger (resp., smaller) seems to choose larger (smaller) thresh-
olds and leads to larger (smaller) population. The parameter dependence on the fixed k0

and proportional costs k1 are qualitatively the same for the upper threshold x̄ and the
harvesting amount ξ̄ , suggesting that incurring a higher cost result in less frequent but
more drastic harvesting. This is due to that executing small harvesting several times are
rather costly than choosing a more drastic harvesting. The dependence between k0 and
k1 is different for the lower threshold as suggested in Table 2, implying that incurring a
higher fixed cost results in choosing a smaller x. On the other hand, incurring a higher
proportional cost results in choosing a larger x. This difference can be explained by the
different nature of the two costs. Increasing the fixed cost induces less frequent interven-
tions because this cost is the same at each intervention, while higher proportional cost
induces smaller amount of harvesting because this cost is positively proportional to the
harvested amount of the population. These results are consistent with the model without
uncertainty [44], demonstrating a qualitative linkage between the present and previous
models.

Finally, Figs. 11 and 12 on the parameters a and b suggest that increasing the lower-
bound (resp., upper-bound) of uncertainties through increasing a (resp., b) lowers the
thresholds x̄ and x, and further the amount of harvesting ξ̄ . This is due to that the har-
vested amount is the multiplicative form zξ̄ , meaning that a larger ξ̄ is necessary to effi-
ciently suppress the population with a possibly smaller z. A practical implication of this
observation is that increasing the mean a+b

2 would be a key to effectively suppress the pop-
ulation at a lower level with smaller harvesting effort. Collecting empirical relationship be-
tween the harvesting effort and the realized impacts of the interventions can potentially
make the range [a, b] of the uncertainties smaller or its means larger, so that the decision-
maker can better manage and predict the controlled population dynamics. However, in
practice, such an effort may require costly additional field surveys, like performance tests
of the interventions [64] and behavioral analysis of the bird in the habitat [65]. Our com-
putational results suggest that such preliminary surveys should be carried out if they are
evaluated as less costly than taking interventions under the uncertainties. If it is not the
case, a cost term on a preliminary field survey must be incorporated into the performance
index, leading to an advanced optimization problem. Importance of reducing and evalu-
ating the uncertainties has also been suggested in a research with empirical models [66].
Our computational results support their suggestion.

4.3 Statistical indices
Here, we focus on parameter dependence of statistical indices on the controlled state dy-
namics. Before the analysis, we check their validity through a comparison with a numer-
ical result by a standard Monte-Carlo combined with the classical Euler–Maruyama dis-
cretization of the optimally-controlled SDE. For the nominal parameter values, the formu-
lae (79), (80), and (81) lead to E[τ ] = 0.5887, Std[τ ] = 1.0530, and H = 19.63. On the other
hand, the numerical counterparts with the Monte-Carlo method (109 sample points, the
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Table 3 Parameter dependence of the E[τ ], Std[τ ], and H The notations “+” and “–” mean increase
and decrease of these indices

Parameter Smallest value Largest value E[τ ] Std[τ ] H

μ 0.2 0.8 – – +
σ 0.1 0.7 + + –
δ 1.5 3.0 – – +
r 0.003 0.007 + + –
R 0.1 5.0 – – +
k0 0.01 0.25 + + +
k1 0.01 0.20 – – +
a 0.1 0.9 + + –
b 0.5 1.0 + + –

Figure 13 Dependence of E[τ ] (red), Std[τ ] (blue),
and H (green) on μ

Figure 14 Dependence of E[τ ] (red), Std[τ ] (blue),
and H (green) on σ

time increment 0.00001) are E[τ ] = 0.5898, Std[τ ] = 1.0422, and H = 19.47. The obtained
results demonstrate a reasonable agreement between the theoretical and numerical results
and suggest validity of these analytical formulae.

The parameter dependence of the optimally-controlled dynamics on the other parame-
ters are summarized in Table 3, suggesting monotone dependence of the statistical indices
of the dynamics on the parameters. Especially the dependence of E[τ ] and Std[τ ] on each
parameter is qualitatively the same, suggesting that increase or decrease of the mean and
standard deviation is coherent under the optimal policy.

The quantitative analysis in what follows puts a focus on parameter dependence of the
optimally-controlled dynamics on the ecological parameters μ and σ . Figures 13 and 14
show the computed E[τ ], Std[τ ], and H for different values of μ and σ , respectively. The
results imply a critical importance of identifying the model parameters especially when μ

is relatively small and/or σ is relatively large. Because of the monotone and convex depen-
dence as plotted in Figs. 13 and 14. Such a situation is in practice encountered when the
population dynamics is highly stochastic where the ratio μσ –2 is large. The standard de-
viation Std[τ ] is more affected by the parameter values than the mean E[τ ], implying that
the optimal timing of the harvesting timing may be highly variable when the deterministic
growth rate is small.
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Figure 15 Dependence of E[τ ] (red), Std[τ ] (blue),
and H (green) on a

Figure 16 Dependence of E[τ ] (red), Std[τ ] (blue),
and H (green) on b

Statistical analysis focusing on the uncertainty of the interventions is also carried out by
examining parameter dependence of the statistical indices on a and b. Figures 15 and 16
demonstrate that reducing the potential uncertainties of interventions through increasing
of a or decreasing b can effectively reduce both the mean and standard deviation of the
harvesting frequency, and further the unit-time harvesting H . This observation combined
with Figs. 11 and 12 on the parameter dependence of the management thresholds leads to
a key implication that reducing the range and/or mean of the uncertainties is indispens-
able for cost-effective and less frequent interventions to suppress the population. This ob-
servation found through the present model emphasizes crucial importance of accurately
estimating the intervention impacts in environmental and ecological management.

5 Conclusions
An impulse control model of a 1-D diffusion process with imperfect interventions was
formulated, and the associated HJBQVI was presented with its solvability and verification
results. A candidate exact solution to the HJBQVI was found and a system of nonlinear
equations to determine its coefficients was derived. The system was solved numerically
and the coefficients were found successfully. In addition, the (localized) HJBQVI was dis-
cretized with a finite difference scheme, demonstrating that the solutions generated by the
determined coefficients and that by the scheme agreed well. Application of the scheme to
the HJBQVI revealed both qualitative and quantitative parameter dependence of the opti-
mal policy and the controlled dynamics extensively. The parameter dependence was found
to be monotone for the ranges of the examined parameter values. Statistical analysis on
the controlled dynamics demonstrated importance of accurately identifying the ecological
parameters involved in the SDE.

Our model was possibly the simplest one, and can be extended to generalized mod-
els. Population dynamics may be subject to nonlinear [67, 68] and jump disturbances
[69, 70]. A more general form of uncertainty in the interventions can be considered. In
practical problems, different types of imperfectness would be encountered. An example
is the model uncertainty in the state dynamics itself, which has conventionally been dis-
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cussed in the framework of the differential game between the decision-maker and na-
ture [71, 72]. The modern poorly known dynamics approach can also harmonize with the
present framework [73]. The filtering problem as an identification through doing problem
would be encountered if the system dynamics has a parameter whose value is not known
a priori [74, 75]. It is not always possible to obtain a continuous information flow of the
system dynamics but discrete and costly observations may be possible [76, 77]. Delayed
execution of control policy is also an important element in realistic problems [78]. The
present model is a building block for approaching these advanced issues. Models based
on singular-like controls [79] can also be considered in the context of the intervention
uncertainty discussed in this paper.

Appendix: Proofs of propositions

Proof of Proposition 1 With the null control η = η0, we have

�(x) ≥ –RE
[∫ ∞

0
e–δsXM

s ds
]

= Bxm. (82)

Combining (82), (17), and (18) yields (23). The last statement directly follows from (23). �

Proof of Proposition 2 By (19), considering a policy immediately harvesting the population
with a fixed amount of ζ such that 0 < ζ ≤ x, which is admissible and sub-optimal, yields

�(x) ≤ E
[
K(ζ ) + �(X0)

]
= K(ζ ) +

∫ b

a
�(x – zζ )q(z) dz. (83)

Taking the infimum of the right-hand side of (83) with respect to 0 < ζ ≤ x yields (24). �

Proof of Proposition 3 Given (Bt)t≥0 and Z, the process (Xt)t≥0 starting from the initial
condition is denoted as (X(x)

t )t≥0. Set x, y such that 0 ≤ y ≤ x. Choose one η ∈ Ay. Notice
that we have Ay ⊂ Ax because of 0 ≤ y ≤ x. The process Yt = X(x)

t – X(y)
t is continuous at

each τi because

Yτi = X(x)
τi

– X(y)
τi

= X(x)
τi– – ziζ –

(
X(y)

τi– – ziζ
)

= X(x)
τi– – X(y)

τi–

= Yτi–.

(84)

Therefore, (Yt)t≥0 is a classical geometric Brownian motion:

dYt = Yt(μdt + σ dBt), t ≥ 0 (85)

with the initial condition Y0– = x – y ≥ 0. We get

E
[
Y l

t
]

= E
[∣∣X(x)

t – X(y)
t

∣∣l] ≤ exp(lμ+ 1
2 l(l–1)σ 2)t |x – y|l, x, y ≥ 0, t ≥ 0 (86)
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for any l > 0. For any x, y, 0 ≤ y ≤ x, we have

∣∣J(x;η) – J(y;η)
∣∣ =

∣∣∣∣E
[∫ ∞

0
e–δs(–R

(
X(x)

s
)M + r

(
X(x)

s
)m)

ds

–
∫ ∞

0
e–δs(–R

(
X(y)

s
)M + r

(
X(y)

s
)m)

ds
]∣∣∣∣

≤ RE
[∫ ∞

0
e–δs∣∣(X(x)

s
)M –

(
X(y)

s
)M∣∣ds

]

+ rE
[∫ ∞

0
e–δs∣∣(X(x)

s
)m –

(
X(y)

s
)m∣∣ds

]
.

(87)

Notice that

∣∣(X(x)
s

)M –
(
X(y)

s
)M∣∣ ≤ ∣∣X(x)

s – X(y)
s

∣∣M = Y M
s (88)

by an elementary calculation, and that

∣∣(X(x)
s

)m –
(
X(y)

s
)m∣∣ ≤ m max

{
X(x)

s , X(y)
s

}m–1∣∣X(x)
s – X(y)

s
∣∣

= m max
{

X(x)
s , X(y)

s
}m–1Ys

= m
(
X(x)

s
)m–1Ys

≤ m
(
X(x)

s,0
)m–1Ys.

(89)

Here, X(x)
s,0 represents X(x)

s with the null control η = η0, which is a classical geometric Brow-
nian motion. Therefore, (X(x)

s,0 )m–1Ys is a geometric Brownian motion subject to the initial
condition xm–1|x – y|. By (86), we get with some C > 0:

∣∣J(x;η) – J(y;η)
∣∣ ≤ C

(
(x – y)M + xm–1|x – y|) (90)

and thus

J(x;η) ≤ J(y;η) + C
(
(x – y)M + xm–1|x – y|). (91)

Taking the infimum with respect to η ∈Ay gives

inf
η∈Ay

J(x;η) ≤ �(y) + C
(
(x – y)M + xm–1|x – y|). (92)

In addition, we have

inf
η∈Ay

J(x;η) ≥ inf
η∈Ax

J(x;η) = �(x) (93)

and thus

�(x) – �(y) ≤ C
(
(x – y)M + xm–1|x – y|), 0 ≤ y ≤ x. (94)

The continuity at the origin is the consequence of Proposition 1. �
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Proof of Proposition 4 The proof here is based on the technique of Federico et al. [80].
Firstly, we show that � is a viscosity sub-solution. The condition at x = 0 is obviously
satisfied. Fix x0 > 0 and set a test function ψ for viscosity sub-solutions such that �(x0) =
ψ(x0) and ψ > � in (x0 – ε, x0 + ε) with a small constant ε > 0. Set the stopping time τ̄ =
inf{t ≥ 0||Xt – x0| > ε}, which is adapted to the filtration F and satisfies Pr[τ̄ > 0] = 1. Set
τ = min{τ̄ , ε0} with ε0 > 0. Then, by (19), with the null control η = η0, we have

ψ(x0) = �(x0)

≤ E
[∫ τ

0
e–δs(–RXM

s + rXm
s

)
ds + e–δτ�(Xτ )

]

≤ E
[∫ τ

0
e–δs(–RXM

s + rXm
s

)
ds + e–δτψ(Xτ )

]
.

(95)

By the Dynkin’s formula, dividing the both-hand sides by ε0 and letting ε0 → +0 with the
dominated convergence theorem yields

Lψ + RxM – rxm ≤ 0 at x = x0. (96)

The inequality

� ≤M� at x = x0 (97)

follows from Proposition 2, and combining (96) and (97) gives the desired inequality. The
property of viscosity sub-solution then follows because x0 > 0 is arbitrary.

Secondly, we show that � is a viscosity super-solution. The condition at x = 0 is ob-
viously satisfied. Fix x0 > 0 and set a test function ψ for viscosity super-solutions such
that �(x0) = ψ(x0) and ψ < � near x = x0. If �(x0) = M�(x0), then we have nothing
to prove and thus assume �(x0) < M�(x0). Then, there is a constant ω > 0 such that
�(x0) + ω ≤M�(x0). We must show

Lψ + RxM – rxm ≥ 0 at x = x0. (98)

Assume (98) is not true. Then, there exists a constant ε > 0 such that Lψ + RxM – rxm ≤ –ε

at x = x0. Because of the smoothness of ψ and continuity of � and M� (By an application
of Proposition 3 of Azimzadeh et al. [42] to M), we have 2δ0 ∈ (0, x0) such that

⎧
⎪⎪⎨

⎪⎪⎩

Lψ + RxM – rxm ≤ –ε/2

� ≥ ψ

� ≤M� – ω/2

for all x0 – 2δ0 ≤ x ≤ x0 + 2δ0, x 
= x0. (99)
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Set the stopping time τ = inf{t ≥ 0 | |Xt – x0| > δ0} with Pr[τ > 0] = 1. The third line of (99)
implies that undertaking an intervention is not optimal during (0, τ̂ ). By (19), we have

ψ(x0) = �(x0)

= E
[∫ τ

0
e–δs(–RXM

s + rXm
s

)
ds + e–δτ�(Xτ )

]

≥ E
[∫ τ

0
e–δs(–RXM

s + rXm
s

)
ds + e–δτψ(Xτ )

]
.

(100)

Again, by the Dynkin’s formula and (100), we have

E
[∫ τ

0
e–δs(Lψ(Xs) + RXM

s – rXm
s

)
ds

]

= ψ(x0) – E
[∫ τ

0
e–δs(–RXM

s + rXm
s

)
ds + e–δτψ(Xτ )

]

= �(x0) – E
[∫ τ

0
e–δs(–RXM

s + rXm
s

)
ds + e–δτψ(Xτ )

]

≥ �(x0) – E
[∫ τ

0
e–δs(–RXM

s + rXm
s

)
ds + e–δτ�(Xτ )

]

= 0.

(101)

By the first line of (99), from (101) we get

0 ≤ E
[∫ τ

0

(
–

ε

2

)
e–δs ds

]
= –

ε

2
E
[∫ τ

0
e–δs ds

]
= –

ε

2
1 – E[e–δτ ]

δ
, (102)

and thus

1 ≤ E
[
e–δτ

]
. (103)

However, the inequality is possible (103) only when τ = 0 a.s., which is a contradiction.
Therefore, we have (98). The property of viscosity super-solution is then proven because
x0 > 0 is arbitrary. �

Proof of Proposition 5 The proof is based on that of Theorem 3.1 of Ishii [81] where
the comparison principle of a HJBQVI is discussed by constructing a strict viscosity-
supersolution that satisfies the inequalities of viscosity sub-solutions (in our case, (30)
and (31)) with “<” instead of “≤”.

The boundary condition is different between the two problems, where ours is found to
be simpler. The degenerate elliptic part Lψ + RxM – rxm is not problematic because its
coefficients are bounded and smooth in [0, Xmax]. Therefore, we can apply the fundamen-
tal lemma (Example 1 of Crandall and Ishii [82]). The non-local part ϕ – Mϕ ≥ 0 has a
somewhat different form from the conventional ones as pointed out above because of the
uncertainty involved in the interventions. We can directly check that the followings, which
correspond to the conditions (1)–(6) in Proposition 2.3 of Ishii [81]: let u, v be real-valued
functions defined on [0, Xmax], then we have
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• (Monotonicity) In [0, Xmax], if u ≤ v then Mu ≤Mv,
• (Concavity) cMu + (1 – c)Mv ≤M(cu + (1 – c)v) for all 0 ≤ c ≤ 1,
• (Transversity) M(u + c) = Mu + c for all c ∈R,
• (Upper-semi continuity) If u ∈ USC[0, Xmax], then Mu ∈ USC[0, Xmax],
• (Lower-semi continuity) If u ∈ LSC[0, Xmax], then Mu ∈ LSC[0, Xmax], and
• (Continuity) ‖Mu – Mv‖C[0,Xmax] → 0 as ‖u – v‖C[0,Xmax] → 0.

Set C = rδ–1Xm
max + 1 and α = min{1, k0} > 0. Let u and v be a viscosity sub-solution and

a viscosity super-solution, respectively. For each n ∈ N, set un = (1 – 1
n )u – C

n , which is
straightforwardly checked to be a (strict) viscosity sub-solution to

max
{
L� + RxM – rxm,� – M�

}
+

α

n
= 0, 0 < x < Xmax (104)

and

max{� – g,� – M�} +
α

n
= 0, x = Xmax. (105)

From this observation, we see that un is a strict viscosity sub-solution to the localized
HJBQVI. Constructing strict viscosity solution is necessary to handle the non-local term.
The remaining part of the proof follows Ishii [81]. �

Proof of Proposition 6 The proof here is based on that of Theorem 1 of Wu [83]. We must
modify their proof in several parts because our model does not have jump but has an
uncertainty in interventions. By Proposition 1 for any η ∈A and x ≥ 0, we get

BE
[
e–δtXM

t
] ≤ E

[
e–δtφ(Xt)

] ≤ AE
[
e–δtXm

t
]
, t ≥ 0, x ≥ 0. (106)

Let (X̄t)t≥0 be the process (Xt)t≥0 with the null control η = η0. Then, we have X̄t ≥ Xt a.s.
for t ≥ 0. Therefore, we get

lim
t→+∞ BE

[
e–δtXM

t
] ≥ lim

t→+∞ BE
[
e–δtX̄M

t
]

= 0 and

lim
t→+∞ AE

[
e–δtXm

t
] ≤ lim

t→+∞ AE
[
e–δtX̄m

t
]

= 0,
(107)

leading to

0 = lim
t→+∞ BE

[
e–δtX̄M

t
] ≤ E

[
e–δtφ(Xt)

] ≤ lim
t→+∞ AE

[
e–δtX̄m

t
]

= 0 (108)

and thus

lim
t→+∞ E

[
e–δtφ(Xt)

]
= 0. (109)

Here, recall that B < 0 and A > 0. For any t ≥ 0, set θi+1 = max{τi, min{τi+1, t}}. The gener-
alized Dynkin’s formula then leads to

E
[
e–δθi+1φ(Xθi+1–)

]
= E

[
e–δτiφ(Xτi )

]
– E

[∫ θi+1

τi

e–δsLφ(Xs) ds
]

(110)
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because τi ≤ θi+1 ≤ τi+1. Letting t → +∞ in (110), using the dominated convergence the-
orem, and summing i = 0 from i = n ∈N yields

n∑

i=0

E
[
e–δτi+1φ(Xτi+1–)

]
=

n∑

i=0

E
[
e–δτiφ(Xτi )

]
–

n∑

i=0

E
[∫ τi+1

τi

e–δsLφ(Xs) ds
]

= φ(x) +
n∑

i=1

E
[
e–δτiφ(Xτi )

]
– E

[∫ τn+1

0
e–δsLφ(Xs) ds

]
.

(111)

We can rewrite (111) as

E
[
e–δτn+1φ(Xτn+1–)

]
= φ(x) +

n∑

i=1

E
[
e–δτi

(
φ(Xτi ) – φ(Xτi–)

)]

– E
[∫ τn+1

0
e–δsLφ(Xs) ds

]
.

(112)

By (41) and (42), we have

E
[∫ τn+1

0
e–δsLφ(Xs) ds

]
≤ E

[∫ τn+1

0
e–δs(rXm

s – RXM
s

)
ds

]
. (113)

In addition, we have

E
[
e–δτi

(
φ(Xτi ) – φ(Xτi–)

)] ≥ –E
[
e–δτi K(ζi)

]
, i ≥ 1. (114)

This follows from (41) and (42) because for i ≥ 1 we have

e–δτiφ(Xτi–) ≤ e–δτi

∫ b

a
g(zi)φ(Xτi– – ziζi) dzi + e–δτi K(ζi), (115)

and then taking the expectation yields (114) since

E
[
e–δτiφ(Xτi–)

]
– E

[
e–δτi K(ζi)

] ≤ E
[

e–δτi

∫ b

a
g(zi)φ(Xτi– – ziζi) dzi

]

= E
[
e–δτiφ(Xτi )

]
.

(116)

Substituting (113) and (114) into (112) yields

E
[
e–δτn+1φ(Xτn+1–)

]

= φ(x) +
n∑

i=1

E
[
e–δτi

(
φ(Xτi ) – φ(Xτi–)

)]
– E

[∫ τn+1

0
e–δsLφ(Xs) ds

]

≥ φ(x) +
n∑

i=1

E
[
e–δτi

(
φ(Xτi ) – φ(Xτi–)

)]
– E

[∫ τn+1

0
e–δs(rXm

s – RXM
s

)
ds

]

≥ φ(x) –
n∑

i=1

E
[
e–δτi K(ζi)

]
– E

[∫ τn+1

0
e–δs(rXm

s – RXM
s

)
ds

]
.

(117)
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Namely, we get

φ(x) ≤ E

[∫ τn+1

0
e–δs(rXm

s – RXM
s

)
ds +

n∑

i=1

e–δτi K(ζi)

]

+ E
[
e–δτn+1φ(Xτn+1 )

]
. (118)

Letting n → +∞ gives E[e–δτn+1φ(Xτn+1 )] → +0 by the assumption, and we get

φ(x) ≤ J(x;η). (119)

Because η ∈A and x ≥ 0 are arbitrary, we get

φ(x) ≤ �(x), (120)

namely (43) and the equality (44) with the QVI-control. �
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