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Abstract
The finite element method is widely used in simulations of various fields. However,
when considering domains whose extent differs strongly in different spatial
directions a finite element simulation becomes computationally very expensive due
to the large number of degrees of freedom. An example of such a domain are the
cables inside of the magnets of particle accelerators. For translationally invariant
domains, this work proposes a quasi-3-D method. Thereby, a 2-D finite element
method with a nodal basis in the cross-section is combined with a spectral method
with a wavelet basis in the longitudinal direction. Furthermore, a spectral method
with a wavelet basis and an adaptive and time-dependent resolution is presented. All
methods are verified. As an example the hot-spot propagation due to a quench in
Rutherford cables is simulated successfully.

Keywords: Finite element methods; Hybrid discretizations; Spectral element
methods; Wavelets; Quenches

1 Introduction
A standard finite element method (FE method) allows to discretize and solve differential
equations on arbitrary geometries [1]. Attaining a sufficient resolution with a standard
three-dimensional (3-D) FE approach may be intractable within a limited computation
time. For certain geometries, however, an adapted discretization and simulation method
may reduce the computational expense. This work focuses on multi-scale problems fea-
turing domains with a high ratio between the extend in one spatial direction, referred
to as longitudinal direction, and the extend in the other spatial directions, referred to as
cross-section, which are, moreover, the translationally invariant with respect to the lon-
gitudinal direction. If the cross-section requires a high resolution, because it is e.g. very
detailed, performing a standard FE method would be computationally very expensive due
to a large number of degrees of freedom. Usually, one would remedy this issue by reduc-
ing the model to a two-dimensional (2-D) [2] or even one-dimensional (1-D) [3] model by
exploiting the symmetry planes. Unfortunately, this simplification is no longer possible as
soon as the physical behavior breaks the symmetry, e.g. for a longitudinally asymmetrical
heat source in a thermal heat conduction problem.

The described configuration occurs in superconducting magnets in particle accelera-
tors. These magnets struggle with the quench phenomenon, which is a sudden and local
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Figure 1 Cross-section of cos-theta magnet for FCC and HE-LHC. A stack of three Rutherford cables is
highlighted in red [13]

transition from the superconducting to the normal state [4]. Quenches emerge randomly
during continuous operation. The affected regions normally cool down again and return
to a superconducting state in doing so. Sometimes, however, a quench leads to a ther-
mal runaway and the magnet can take irreversible damage if protection measures are not
taken in time [4]. Sensitive safety margins lead to a high fault time of the accelerator [5].
The further improvement of the protection systems necessitates the study of the transient
effects inside the magnet by numerical simulations [6].

An alternative to the FE approach is based on a quasi-3-D method, that becomes appli-
cable by exploiting the geometrical symmetry of the model [7, 8]. Here, a 2-D FE method
in the cross-section is combined with a 1-D spectral method [9] in the longitudinal di-
rection. While this approach utilizes FE ansatz functions of lowest order, the order of the
spectral element ansatz functions is chosen arbitrarily or appropriately for the problem at
hand. Hence, the Q3D method is similar to an anisotropic hp-method [10].

In earlier works, harmonic functions [7] and orthogonal polynomials [8] have been used
as basis functions for the spectral method. In this work, however, wavelets and the corre-
sponding scaling functions are used as an alternative to these. A comparison of orthogonal
polynomials and wavelets is made. Wavelets are functions that are defined by properties
within the multiresolution analysis (MRA) [11]. In this work, the Daubechies wavelets [12]
are utilized.

This paper is structured as follows. First, an introduction to wavelets is given and a
spectral method using wavelets is derived. Then, the FE method and the spectral wavelet
method are combined into a hybrid Q3D method. Next, an adaptive resolution strategy
is discussed for the spectral method. Lastly, the methods are compared and employed
to compute the heat conduction in a benchmark model representing a superconducting
Rutherford cable as used in superconducting accelerator magnets [13, 14], see Fig. 1. Here,
the asymmetrical heat excitation generated by a quench is simulated by an artificial heat
source. To obtain a realistic quench simulation, a magneto-thermal coupling is required,
which would necessitate the use of vectorial edge shape functions [15]. These are more
involved than nodal ones and beyond this work’s scope [16].

2 Introduction to wavelets
2.1 General statements
The MRA [11] consists of closed spaces Vj that are nested subspaces of each other, i.e. it
holds that Vj ⊂ Vj–1. Furthermore, the spaces Wj := V ⊥

j ∩Vj–1 are defined as the orthogonal
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complement of Vj in Vj–1. Thus, it holds that

Vj–1 = Vj ⊕ Wj (1)

and

Wi ⊥ Wj

for i �= j. By applying (1) to itself, one gets

Vj = VJ ⊕
J–j–1⊕

k=0

WJ–k ,

where ⊕ denotes the direct sum. There are scaling functions φj,n and wavelets ψj,n. They
are equipped with a scale j and a translation n and are defined as

φj,n(x) := 2–j/2φ
(
2–jx – n

)
,

ψj,n(x) := 2–j/2ψ
(
2–jx – n

)
.

Within these definitions, the mother scaling function φ and the mother wavelet ψ are used.
These coincide with the scaling function and wavelet, respectively, for j = 0 and n = 0.

The scaling functions and wavelets at fixed scale j constitute an orthonormal basis to
the space Vj and Wj, respectively. To be more precise, it holds that

Vj := span{φj,n : n ∈ Z},
Wj := span{ψj,n : n ∈ Z}.

2.2 Daubechies-N kind wavelets
There is a great variety of different kinds of wavelets [12, 17]. However, within the spectral
methods of this work, scaling functions and wavelets of the DB-N kind are used, because
they are compactly supported and constructed in a way to have a maximum number of
vanishing moments [12]. To be more precise, the wavelets have a number of N vanishing
moments, i.e. it holds

∫
xkψ(x) dx = 0

for k = 0, . . . , N – 1. Moreover, they are constructed such that they have a minimal support
width for the given number of vanishing moments [18]. The scaling functions used in this
work are continuous for N > 1. In [19] one can find estimates for the Hölder regularity
for the scaling functions with N = 2, . . . , 10. For N = 2, 3, 4, these are also determined in
[12]. It follows that the scaling functions are continuously differentiable for N = 3, 4, 5 and
two times continuously differentiable for N = 6, 7, 8. The wavelets have the same regularity
properties. For N = 6, scaling function and wavelet are depicted in Fig. 2.

The differential equations to be solved in the subsequent sections are formulated on
intervals. Consequently, for N ≥ 2 there are always functions that are partially inside and
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Figure 2 Scaling function φ(x) (black and solid) and wavelet ψ (x) (blue and dashed) of DB-N kind with N = 6

partially outside the interval. But a basis that is defined on the interval is required. The
construction of such a basis as proposed in [20] is used in this work. Let I = [a, b] be
an interval. For each boundary N boundary scaling functions and boundary wavelets are
constructed, such that the number of vanishing moments is preserved. Inside the interval,
the ordinary functions are used.

Because the boundary scaling functions and boundary wavelets can be written as a linear
combination of scaling functions, they feature the same regularity. For a sufficient small
scale j, the scaling functions on the interval I are defined by

φ̂j,n :=

⎧
⎪⎪⎨

⎪⎪⎩

φa
j,n, n = 0, . . . , N – 1,

φj,n, n = N , . . . ,J + N – 1,

φb
j,n, n = J + N , . . . ,D – 1.

Herein, D indicates the number of basis functions on the interval and J indicates the
number of interior basis functions. With this definition, the space of scaling functions at
scale j on the interval I can be defined as

V I
j := {φ̂j,n : n = 0, . . . ,D – 1}.

The space of wavelets at scale j on the interval I , indicated by W I
j , is defined analogously.

3 Spectral methods with wavelets-bases
As stated above, the Q3D methods is a combination of a 2-D FE method and a 1-D spec-
tral method. The latter one, that uses a wavelet-basis, is examined in this section. It is
exemplary developed for the 1-D heat equation. The partial differential equation (PDE)
together with the boundary conditions and the initial condition reads as

–∂x
(
λ(x)∂xθ (x, t)

)
+ cV(x)∂tθ (x, t) = q(x, t), (2)

with (x, t) ∈ �t,

θ (x, t) = θdir(x, t), (x, t) ∈ �dir × (0,∞),
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–λ(x)∂xθ (x, t) = gneum(x, t), (x, t) ∈ �neum × (0,∞),

θ (x, 0) = θ0(x), x ∈ �.

Here, x is the spatial coordinate in m, t the time in s, θ (x, t) the unknown temperature in K,
λ(x) the thermal conductivity in W/(m K), cV(x) the volumetric heat capacity in J/(m3 K)
and q(x, t) the volumetric heat flux density in W/m3. Furthermore, the problem is defined
on the domain �t := � × (0,∞), where � is the spatial domain. The boundary ∂� is di-
vided in �dir and �neum, with ∂� = �dir ∪ �neum and �dir ∩ �neum = ∅, on which Dirichlet
θdir(x, t) in K and Neumann boundary conditions gneum(x, t) in W/m2 are defined, respec-
tively. The initial condition uses the initial value θ0(x) in K.

Let for this section be � = (0, L). The temperature θ (x, t) is then approximated by θ̃ (x, t)
in V �

j for each time instance. The ansatz of method of lines leads to

θ (x, t) ≈ θ̃ (x, t) =
D–1∑

n=0

un(t)φ̂j,n(x). (3)

The Galerkin approach is applied to (2). Therefore, (2) is tested with the basis functions
of V �

j . With the inner product (u(x), v(x)) :=
∫
�

u(x)v(x) dx, this leads to

(
–∂x

(
λ(x)∂xθ (x, t)

)
, φ̂j,m(x)

)
+
(
cV(x)∂tθ (x, t), φ̂j,m(x)

)
=
(
q(x, t), φ̂j,m(x)

)
, (4)

for m = 0, . . . ,D – 1. After inserting (3) into (4), one receives the semi-discrete equation

Asf
λ u(t) + Msf

cV
∂tu(t) = qsf (t). (5)

The used components are defined as

Asf
λ :=

(
Asf

λ;m,n
)

m,n=0,...,D–1 ∈R
D×D ,

Msf
cV

:=
(
Msf

cV;m,n
)

m,n=0,...,D–1 ∈R
D×D ,

qsf (t) :=
(
qsf

m(t)
)

m=0,...,D–1 ∈R
D ,

u(t) :=
(
un(t)

)
n=0,...,D–1 ∈ R

D ,

where

Asf
λ;m,n :=

∫

�

λ(x)∂xφ̂j,n(x)∂xφ̂j,m(x) dx –
[
λ(x)∂xφ̂j,n(x)φ̂j,m(x)

]L
0,

Msf
cV;m,n :=

∫

�

cV(x)φ̂j,n(x)φ̂j,m(x) dx,

qsf
m(t) :=

∫

�

q(x, t)φ̂j,m(x) dx.

Integration by parts is used in the calculation of the entries of Asf
λ . For homogeneous ma-

terial properties, Msf
cV

is a diagonal matrix due to the orthonormality of the scaling func-
tions. Consequently, Msf

cV
is a regular matrix and (5) is a system of ordinary differential

equations.
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For the boundary conditions to be satisfied, one can find a matrix Bsf ∈ R
2×D and a

vector bsf ∈R
2×1 such that the equation

Bsf u(t) = bsf

has to hold for every time instance. For discretizing (5) in time, an arbitrary time integra-
tion method can be used.

4 Quasi-3-D method
4.1 Definition of the domain and spaces
The Q3D method shall be derived by means of the 3-D heat equation

–∇ · (λ(x)∇θ (x, t)
)

+ cV(x)∂tθ (x, t) = q(x, t), (6)

where (x, t) ∈ �t. With a 2-D and open domain �S ⊂R
2 and I = (0, L), the spatial domain

defined as

� :=
{

x ∈R
3 : (x, y) ∈ �S, z ∈ I

}
(7)

extends in z-direction from 0 to L. Moreover, it assumed that the geometry is translation-
ally invariant with respect to the z-direction. The boundary ∂� is divided in three different
parts

Sfront :=
{

x ∈ R
3 : (x, y) ∈ �S, z = 0

}
, (8a)

Sback :=
{

x ∈R
3 : (x, y) ∈ �S, z = L

}
, (8b)

Sside := ∂� \ {Sfront ∪ Sback}. (8c)

Next the related spaces need to be defined. Let

Sm :=
{

v ∈ C(�̄) : v|T ∈ 	m,∀T ∈ T
}

be the space of polynomial finite elements of order m, where 	m is the set of all polyno-
mials up to order m and T is a two-dimensional triangulation (see [1]). With this,

Kj :=
{

v ∈ C(�̄) : v(x, y, z) = f (x, y)g(z), f ∈ S1, g ∈ V I
j
}

.

Combining the bases of both spaces, S1 and V I
j , a basis for Kj is given by

{κ̂j,m,n = νmφ̂j,n–1 : m = 1, . . . ,I , n = 1, . . . ,D},

with νm ∈ S1, φ̂j,n–1 ∈ V I
j and I being the number of nodes in the triangulation T . To make

the following derivation clearer, the notation

κj,k := κ̂j,m,n, k = n + (m – 1)I
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is used to reduce the number of indices from 3 to 2. Thus, the basis for Kj can be written
as

{κj,k : k = 1, . . . ,DI}.

4.2 Derivation of the Q3D method
The Q3D method is derived for the 3-D heat equation (6). The temperature is approxi-
mated in Kj. Using the ansatz of method of lines leads to

θ (x, t) ≈ θ̃ (x, t) =
DI∑

n=1

un(t)κj,n(x). (9)

The heat equation is tested with κj,m for m = 1, . . . ,DI . Together with (9), one receives the
semi-discrete equation

AQ3D
λ u(t) + MQ3D

cV
∂tu(t) = qQ3D(t) (10)

similar to (5). It is assumed that the material parameters can be written as λ(x) =
λxy(x, y)λz(z) and cV(x) = cV,xy(x, y)cV,z(z). Then, the matrices can be written as

AQ3D
λ = Afe

λ ⊗ Msf
λ + Mfe

λ ⊗ Asf
λ

and

MQ3D
cV

= Mfe
cV

⊗ Msf
cV

,

where ⊗ denotes the Kronecker product. The remaining matrices, i.e. the stiffness matrix
of the 2-D FE method and mass matrices of the spectral and FE method, are defined as

Afe
λ :=

(
Afe

λ;m,n
)

m,n=1,...,I ∈R
I×I ,

Mfe
cV

:=
(
Mfe

cV;m,n
)

m,n=1,...,I ∈R
I×I ,

Mfe
λ :=

(
Mfe

λ;m,n
)

m,n=1,...,I ∈R
I×I ,

Msf
λ :=

(
Msf

λ;m,n
)

m,n=0,...,D–1 ∈R
D×D ,

with

Afe
λ;m,n :=

∫

�S

λxy(x, y)∇νm(x, y) · ∇νn(x, y) dA,

Mfe
cV;m,n :=

∫

�S

cV,xy(x, y)νm(x, y)νn(x, y) dA,

Mfe
λ;m,n :=

∫

�S

λxy(x, y)νm(x, y)νn(x, y) dA,

Msf
λ;m,n :=

∫

I
λz(z)φ̂j,n(z)φ̂j,m(z) dz.
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For homogeneous material properties, Mfe
cV

is symmetric and positive-definite because
of

ξTMfe
cV

ξ =
I∑

m,n=1

ξmξnMfe
cV;m,n = cV,xy

∫

�S

∣∣∣∣∣

I∑

m=1

ξmνm(x, y)

∣∣∣∣∣

2

dA > 0,

for ξ ∈ R
I \ {0}. Thus, Mfe

cV
is a regular matrix. Because Msf

cV
is regular as well, MQ3D

cV is
non-singular due to the properties of the Kronecker product and thus, (10) is a system of
ordinary differential equations.

Under the assumption that the volumetric heat flux density can be written as q(x, t) =
qxy(x, y, t)qz(z, t), the right hand side of (10) reads as

qQ3D(t) = sfe(t) ⊗ ssf (t),

with

sfe(t) :=
(
sfe

m(t)
)

m=1,...,I ∈R
I ,

ssf (t) :=
(
ssf

m(t)
)

m=1,...,D ∈R
D

and

sfe
m(t) :=

∫

�S

qxy(x, y, t)νm(x, y) dA,

ssf
m(t) :=

∫

I
qz(z, t)φ̂j,m(z) dz.

For the realization of the boundary conditions, the three different parts of the boundary,
defined in (8a)–(8c), are considered individually. At the front and back side, Sfront and Sback,
this is done with the spectral method, and at the hull Sside with the FE method.

5 Adaptive resolution
In the spectral method in Sect. 3, scaling functions at the same scale are used for the whole
interval as basis functions. Thus, the resolution is constant for the whole interval as well.
When considering a very long domain in z-direction, a high resolution becomes computa-
tionally very expensive due to the large number of degrees of freedom. With the adaptive
resolution method (ARM) derived in this section, a resolution depending on the location
is chosen utilizing the wavelet transform, such that the overall accuracy is sufficiently high.
This can strongly decrease the required degrees of freedom.

The boundary basis functions (Sect. 2.2) are chosen such that the main properties of
wavelets still hold. In particular, it holds that V I

j ⊂ V I
j–1, W I

j = V I
j
⊥ ∩ V I

j–1 and

V I
j–1 = V I

j ⊕ W I
j . (11)

This allows to decompose the spaces V I
j . Figure 3 shows an example of such a decomposi-

tion. The space V I
0 is decomposed in V I

1 and W I
1 , V I

1 in V I
2 and W I

2 , and so on. Approximat-
ing a function in V I

0 is thus equivalent to approximating the same function in the boxed
spaces and adding the solutions.
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Figure 3 Decomposition of VI0 in spaces of scaling functions and
wavelets of greater scale. The arrows denote a decomposition. The
addition of approximations of a function in the boxed spaces yields the
same result as approximating the function in VI0. Here, jmax = 3 and
jmin = 1

Let jmax and jmin denote the maximum and minimum scale used in the approximation,
respectively. The approximation is then equivalent to one with scaling functions at scale
j = jmin – 1. The basis for the adaptive resolution is

Ξ̂
jmax
jmin

:= {φ̂jmax,k : k = 0, . . . ,Djmax – 1}

∪
{ jmax⋃

j=jmin

{ψ̂j,K̂j,n–1 : n = 1, . . . ,ηj}
}

.

It contains all basis functions of V I
jmax (first set) to ensure that every point in the interval I

is covered by at least one function. Moreover, it contains subsets of the bases of the spaces
W I

j for j = jmin, . . . , jmax (second set). The information which of the latter are used is stored
in the ηj-tuples K̂j = (K̂j,1, . . . , K̂j,ηj ). For these, K̂j,i < K̂j,i′ for i < i′ and 1 ≤ K̂j,i ≤ Dj for all i.
How to choose the tuples is discussed later on page 10.

The tuples are also used to define the truncation matrices

Tj = (eK̂j,1 · · · eK̂j,ηj
)T ∈R

ηj×Dj ,

where eK̂j,n ∈R
Dj is the K̂j,nth unit column vector. The basis Ξ̂

jmax
jmin

is used within a spectral
method for the 1-D heat equation from (2). This yields the semi-discrete equation

Adud(t) + Md∂tud(t) = qd(t).

Herein, the used vectors and matrices as well as Bd, the matrix used for the boundary
conditions, are determined with the help of As, Ms, Bs, us(t) and qs(t). The subscript s
stands for a static resolution, whereas d stands for a dynamic resolution. One would re-
ceive the static matrices and vectors if all wavelet basis functions in Ξ̂

jmax
jmin

were used, i.e.
with K̂j = (1, . . . ,Dj) for j = jmin, . . . , jmax. Because of (11), these matrices and vectors can be
derived from those from Sect. 3 at scale jmin – 1. With the transformation matrix

Tjmax
jmin

=

⎛

⎜⎜⎜⎜⎝

Tjmin
. . .

Tjmax

IDjmax

⎞

⎟⎟⎟⎟⎠
∈R

η×Djmin–1 ,

where IDjmax ∈R
Djmax ×Djmax is the identity matrix and η := Djmax +

∑jmax
j=jmin

ηj, one obtains

Ad = Tjmax
jmin

As
(
Tjmax

jmin

)T, (12)

Md = Tjmax
jmin

Ms
(
Tjmax

jmin

)T, (13)
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Figure 4 Flow chart for adapting the resolution

Bd = Bs
(
Tjmax

jmin

)T,

qd(t) = Tjmax
jmin

qs(t),

ud(t) = Tjmax
jmin

us(t).

When changing the resolution, the matrices Ad and Md have to be recalculated. Because
As and Ms are known beforehand and Tjmax

jmin
is sparse, the computational costs for recal-

culation are low.
It remains to determine the tuples K̂j, where 〈·, ·〉 := |(·, ·)| is used. Note that 〈·, ·〉 is not

an inner product but an abbreviation. The initial condition θ0(x) is used at the beginning
of the simulation:

k + 1 ∈ K̂j ⇔ 〈
θ0(x), ψ̂j,k

〉
> τ .

The basis function ψ̂j,k is used if the corresponding coefficient is greater than a tolerance
τ > 0, i.e. if the basis function ψ̂j,k has a significant contribution to the solution.

During the simulation it may occur that the resolution needs to be adapted. One has to
distinguish between decreasing and increasing the resolution (see Fig. 4). For the former
case, after every time step those basis functions whose coefficients are smaller than τ are
removed from Ξ̂

jmax
jmin

. For the latter case, two different causes are considered. An increase
of the resolution may be necessary due to the source term q(x, t) or heat flow. Because the
source term is known beforehand, the required resolution can be determined as for the
initial condition. The function ψ̂j,k is used if 〈q(x, t), ψ̂j,k〉 > τ .

Because the solution of the PDE is approximated with the basis Ξ̂
jmax
jmin

, it is challenging
to detect where a higher resolution caused by heat flow is needed. One possible approach
is presented in the following.

Whenever a coefficient in ud(t) changes from one time step to another by a certain factor
α, the resolution in the interval of the support of the corresponding basis function ψ̂j,k is
increased. Therefore, the wavelets at scale j – 1, whose support is a subset of the support
of ψ̂j,k , are added to Ξ̂

jmax
jmin

, if j – 1 does not exceed the minimum scale jmin, i.e. if j > jmin.
Assuming that j > jmin, the scaling functions at scale j – 1 with the indices

� := {–N + 1 + 2k, . . . , N + 2k} ∩ {0, 1, . . . , L2–j+1 – 1
}
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are added to Ξ̂
jmax
jmin

, i.e. k̃ + 1 ∈ K̂j–1 for all k̃ ∈ �. The corresponding coefficients to these
wavelets are initialized with 0. Hence, the added wavelets must not be removed from Ξ̂

jmax
jmin

for a time interval of length β because the coefficients may need a certain time to ex-
ceed the tolerance τ . This approach has been implemented and is used for the results in
Sect. 7.3.

6 Adaptive quasi-3-D method
The ARM from the previous section is combined with a 2-D FE method into an adaptive
Q3D (AQ3D) method. The adaptivity only takes place in the longitudinal direction, i.e. the
2-D mesh in the cross-section does not change. The method is derived for the 3-D heat
equation (6) and on the domain � defined in (7). The space for basis and test functions is

Kjmax
jmin

:=
{

v ∈ C(�̄) : v(x, y, z) = f (x, y)g(z), f ∈ S1, g ∈ Ξ̂
jmax
jmin

}
.

In contrast to the Q3D method, here the function g is chosen from the space Ξ̂
jmax
jmin

. With
{χn : n = 1, . . . ,η} being a basis of Ξ̂

jmax
jmin

, a basis for Kjmax
jmin

is given by

{κ̂m,n = νmχn : m = 1, . . . ,I , n = 1, . . . ,η},

with νm ∈ S1 and χn ∈ Ξ̂
jmax
jmin

.
Similar to (10), the semi-discrete equation is

AAQ3D
λ u(t) + MAQ3D

cV
∂tu(t) = qAQ3D(t).

Herein, the matrices can be written as

AAQ3D
λ = Afe

λ ⊗ Md,λ + Mfe
λ ⊗ Ad,λ

and

MAQ3D
cV

= Mfe
cV

⊗ Md,cV .

With (12) and (13) and the definition

Qjmax
jmin

:= II ⊗ Tjmax
jmin

,

where II ∈R
I×I is the identity matrix, the matrices can be written as

AAQ3D
λ = Qjmax

jmin

(
Afe

λ ⊗ Ms,λ + Mfe
λ ⊗ As,λ

)(
Qjmax

jmin

)T

and

MAQ3D
cV

= Qjmax
jmin

(
Mfe

cV
⊗ Ms,cV

)(
Qjmax

jmin

)T.

The middle term is independent of the resolution and has to be calculated only once at
the beginning of the simulation.
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Similar to the matrices, the right-hand side vector is

qAQ3D(t) = Qjmax
jmin

(
sfe(t) ⊗ qs(t)

)
.

The boundary conditions are realized at Sfront and Sback with the ARM and at Sside with
the FE method. The process of changing the resolution is very similar to the ARM. Here, a
separate resolution is calculated for every edge in z-direction in the same way as explained
in Sect. 5. The resolutions of all edges and the source term are then merged with each other
to get a single resolution for all edges. Consequently, the matrix Qjmax

jmin
can be recalculated

and the simulation can proceed.

7 Simulation results
The time discretization for each method is realized with the implicit Euler method, where
�t denotes the step width. The difference between numerical and analytical solution is
measured with

‖f ‖max = max
i

{
max
x∈�

∣∣f (x, ti)
∣∣
}

and

‖x‖∞ = max
i

{
max

m

∣∣xm(ti)
∣∣
}

,

where ti = i�t is the time step. The norm ‖·‖max is used to compare θ̃ with an analytical
solution as a function, whereas ‖·‖∞ compares the vector u with a vector uana that contains
the coefficients of the analytical solution.

7.1 Spectral scaling function method
For the spectral scaling function method (SSM), the 1-D heat equation (2) with dimen-
sionless L = 10, N = 6, λ = 10, cV = 1, �t = 1 · 10–3 and 100 time steps is solved. The initial
condition is θ (x, 0) = sin( π

L x), the source term is q(x, t) = 0, and homogeneous Dirichlet
boundary conditions are applied. The error between numerical and analytical solution is
shown in Fig. 5. As expected, the error in both norms decreases with decreasing scale.

Figure 5 Error between the numerical and analytical solution in the ‖·‖∞ and the ‖·‖max norm
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Table 1 Geometrical data of the stack of Rutherford cables (taken from [8])

Cable width: 1.5 mm Total width: 4.9 mm
Cable height: 15 mm Total height: 15.2 mm
Insulation thickness: 0.1 mm Model length: 1 m

Table 2 Material data of the stack of Rutherford cables [8]

Thermal
conductivity

Cable: 235.6 W/(m K)
Glass fiber: 0.1 W/(m K)

Volumetric
heat capacity

Cable: 314.1 J/(m3 K)
Glass fiber: 750 J/(m3 K)

7.2 Quasi-3-D method
The Q3D method is used to simulate the temperature distribution for the benchmark
problem defined in [8] and highlighted in red in Fig. 1. The domain consists of three insu-
lated cables. They extend from z = 0 m to z = 1 m and are surrounded and separated by an
insulation material (glass fiber). The problem’s spatial dimensions and material data are
summarized in Tables 1 and 2, respectively. In the model, the cables have been homog-
enized into a bulk model consisting of one material, although in reality they are built up
of several strands [21]. An initial condition of θ0(x) = 2 K together with Dirichlet bound-
ary conditions at the front (z = 0 m) and back side (z = 1 m) and homogeneous Neumann
boundary conditions are applied at the hull. In order to simulate a quench in the left cable,
the time independent source term

q(x, t) = qmaxe– (z–zq)2

σ2 χq(x) (14)

is applied, where χq(x) is equal to 1 in the left cable and equal to 0 elsewhere. The re-
maining values are chosen as qmax = 1 · 106 W/m3, zq = 0.33 m and σ = 0.05 m. For the
simulation, scaling functions with N = 6 at scale –5 are used and 200 steps of the implicit
Euler method with �t = 5 · 10–5 s are performed. This leads to a total simulation time of
10 ms.

In Fig. 6, the evolution of the temperature inside the three cables is shown. For this plot
and for Fig. 7, the temperature was evaluated at z = zq and for each cable in the center of
its cross-section. The temperature of the left cable increases immediately, while the other
cables start to heat up after a certain time. At the end of the simulation (at t = 10 ms) the
left cable has thus the highest temperature. This can be seen in Fig. 7 and Fig. 8 as well.
In Fig. 7 one can additionally see how the heat has already been flown from z = 0.33 m in
positive and negative z-direction. Figure 8 shows the temperature distribution at the end
of the simulation at z = zq and displays the mesh in the cross-section. One can see that the
temperature inside the three cables is nearly constant, whereas in the insulation material
high temperature gradients are present. This temperature distribution is the result of the
strongly differing values of the thermal conductivity of the cable and insulation (Table 2)
and of the source term in (14), that is independent of x and y inside the left cable.

The Q3D method with scaling functions (denoted with Q3Dsf) is now compared to a
Q3Dpoly method (from [8]) and to a conventional 3-D FE method. The Q3Dpoly method
uses a polynomial basis with a maximum degree M for the spectral method in longitudinal
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Figure 6 Evolution of the temperature in the three cables over time. Evaluated at z = zq and in the center of
the cross-section of each cable

Figure 7 Temperature distribution in z-direction in the three cables at time t = 10 ms and the source term in
dependency of z. The temperature of the cables is evaluated in the center of their cross-section

Figure 8 Temperature distribution in the Rutherford cable at z = zq = 0.33 m at time t = 10 ms
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direction. It decomposes the longitudinal direction in non-equidistant intervals called el-
ements. The problem that is solved can be found in (6) with dimensionless L = 10, λ = 10,
cV = 5, �t = 1 · 10–4 and 10 time steps. The initial condition is

θ0(x) = cos(πx) cos(πy) sin

(
4

2π

L
z
)

(15)

and the source term is q(x, t) = 0. To the front and back side homogeneous Dirichlet
boundary conditions and to the hull homogeneous Neumann boundary conditions are
applied. With the chosen initial condition, the analytical solution of this problem is found
by separation of variables as

θ (x, t) = cos(πx) cos(πy) sin

(
8π

L
z
)

e– λ
cV

π2(2+ 82
L2 )t .

The Q3Dsf method is used with N = 6 and the Q3Dpoly method is used with a maximum
polynomial degree M = 4 on each element in z-direction. The FE method uses a tetrahe-
dral mesh with linear, nodal basis functions.

Figure 9 shows the error of the three methods with respect to the total number of basis
functions. The error for the Q3D methods are measured in the maximum norm over all
edges in z-direction and for the FE method the norm ‖·‖∞ is used. The computed errors
are comparable to each other. Both Q3D methods lead to significantly smaller errors than
the FE method with a similar number of basis functions. Between the two Q3D meth-
ods there are no major differences. The errors of both methods are similar. However, the
number of basis functions in longitudinal direction is more flexible in the Q3Dpoly method
because the polynomial degree and the number of elements can be chosen independently.
For the Q3Dsf method in contrast, once N is set, only the scale can be varied what leads
to a fixed number of basis functions.

Figure 9 Error between analytical and numerical solution of Q3Dsf method (black) and Q3Dpoly method
(blue) and of a conventional 3-D FE method. The numbers between the paranteses are the scale and the
number of FE nodes for Q3Dsf, the number of elements and the number of FE nodes for Q3Dpoly and the
longest edge length for the FE method
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7.3 Adaptive resolution method
The ARM is used to solve the 1-D heat equation (2). The initial condition

θ0(x) = e– (x–L/2)2
2σ2

and the boundary conditions θ (0, t) = θ0(0) ∗ H(0, t) and θ (L, t) = θ0(L) ∗ H(L, t), for t > 0,
are used. Herein, H(x, t) is the fundamental solution of the 1-D heat equation [22] and ∗
denotes convolution. Furthermore, L = 10, N = 3, λ = 10, cV = 1, σ = 0.15, �t = 5 · 10–6.
Moreover, 100 time steps are carried out and a tolerance τ = 1 · 10–8 is chosen.

In Fig. 10, the solution of the ARM is compared to those of the SSM. The error of the
former method at a minimum scale jmin has to be compared to the error of the latter at
scale j = jmin – 1. Both methods yield the same error, as expected. However, the ARM uses
less basis functions than the SSM. Figure 11 shows the number of used basis functions and
the maximum possible number of basis functions for every time step and for the different
minimum scale. As one can see, the actual number is below the maximum number of
L2–jmin+1.

Figure 10 Error between analytical and numerical solution of the ARM (black, solid) and SSM (blue, dashed)
in different norms for jmax = 0

Figure 11 Number of used basis functions for the ARM in every time step. The dashed lines indicate the
maximum possible number of basis functions with the corresponding value of jmin
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7.4 Adaptive Q3D method
For verification, the AQ3D method is used to solve the problem in (6) with dimensionless
L = 10, λ = 10, cV = 5, �t = 1 · 10–4 and 10 time steps. The initial condition is taken from
(15) and the source term is q(x, t) = 0. Homogeneous Dirichlet boundary conditions are
applied on the front and back side, while homogeneous Neumann boundary conditions are
applied to the hull. Figure 12 shows the maximum error between numerical and analytical
solution over all edges in z-direction. The error on each edge is calculated with the infinity
norm. The number of basis functions is increased by using both finer 2-D meshes in the
cross-section and a smaller minimum scale jmin in longitudinal direction. Furthermore,
the maximum scale is set to jmax = –1 and for the spectral method, scaling functions and
wavelets with N = 6 are utilized.

Lastly, to show the potential reduction of basis functions with the AQ3D method, it
is used to solve the benchmark problem with three Rutherford cables defined in [8]. In-
stead of the cables being extended 1 m in z-direction, they are extended to 10 m for this
simulation. Because the center of the source term is still zq = 0.33 m, there are no major

Figure 12 Error between analytical and numerical solution of the AQ3D method in ‖·‖∞ . The numbers
between the parentheses are the minimum scale and the number of FE nodes

Figure 13 Evolution of the temperature in the three cables over time calculated with the Q3D and AQ3D
method. Evaluated at z = zq and in the center of the cross-section of each cable
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Figure 14 Number of used basis functions for the AQ3D in every time step. The dashed line indicates the
maximum possible number of basis functions with the corresponding value of jmin

differences expected in the temperature distribution between z = 0 m and z = 1 m. The re-
maining parameters are the same as in Sect. 7.2. Moreover, scaling functions and wavelets
with N = 6, jmin = –4 and jmax = –3 have been chosen. Thus, the results are comparable
with the results from Sect. 7.2. The tolerance is τ = 1 · 10–4. With the indicated values,
the maximum number of basis functions in longitudinal direction is 320. Furthermore,
the used mesh in the cross section has 1289 nodes and 2496 elements. This leads to a
maximum number of 412,480 basis functions for the AQ3D method.

In Fig. 13, the evolution of the temperature in the three cable is shown for the Q3D and
the AQ3D method. Both methods lead to the same evolution. However, the number of
basis functions of the AQ3D method is significantly lower than the maximum possible
number of basis functions of 412,480 as depicted in Fig. 14. A simulation of this problem
with the Q3D method with the same accuracy in the z-direction and the same mesh in the
cross-section would require this maximum number of 412,480 basis functions.

8 Conclusion
A spectral method using Daubechies scaling functions has been formulated and verified.
This has been combined with a 2-D FE method with a nodal basis into a quasi-3-D method.
With this method, a stack of three simplified Rutherford cables has been simulated suc-
cessfully. A third method with an adaptive resolution in space and time has been formu-
lated for the 1-D heat equation. This method has been extended to a quasi-3-D method in
the same manner as the spectral method. A comparison between the adaptive and asso-
ciated non-adaptive methods showed a significant reduction of the number of basis func-
tions, preserving the accuracy.
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