
Carpio et al. Journal of Mathematics in Industry            (2022) 12:3 
https://doi.org/10.1186/s13362-022-00119-w

R E S E A R C H Open Access

Pattern recognition in data as a diagnosis
tool
Ana Carpio1,2* , Alejandro Simón1, Alicia Torres1 and Luis F. Villa3

*Correspondence:
ana_carpio@mat.ucm.es
1Departamento de Matemática
Aplicada, Universidad Complutense
de Madrid, Plaza de Ciencias 3,
28040, Madrid, Spain
2Gregorio Millan Barbarny Institute
for Modelling and Simulation in
Fluid dynamics, Nanoscience and
Industrial Mathematics, Avenida de
la Universidad 30, 28911, Leganés,
Spain
Full list of author information is
available at the end of the article

Abstract
Medical data often appear in the form of numerical matrices or sequences. We
develop mathematical tools for automatic screening of such data in two medical
contexts: diagnosis of systemic lupus erythematosus (SLE) patients and identification
of cardiac abnormalities. The idea is first to implement adequate data normalizations
and then identify suitable hyperparameters and distances to classify relevant patterns.
To this purpose, we discuss the applicability of Plackett-Luce models for rankings to
hyperparameter and distance selection. Our tests suggest that, while Hamming
distances seem to be well adapted to the study of patterns in matrices representing
data from laboratory tests, dynamic time warping distances provide robust tools for
the study of cardiac signals. The techniques developed here may set a basis for
automatic screening of medical information based on pattern comparison.

Keywords: Pattern classification; Hyperparameter selection; Plackett-Luce models;
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1 Content
One of the most challenging and essential tasks performed by the healthcare professionals
is diagnosing a disease or patient’s condition. Medical diagnoses are based on symptoms,
signs, medical history and complementary examinations, which define the patient’s clin-
ical picture. This information is collected in datasets combining different kinds of data.
Laboratory analyses, for instance, are stored as matrices of numerical values, represent-
ing blood counts, metabolic, ionic, enzyme, hormone, protein, vitamin and antibody tests,
or other variables of interest recorded at different times. Specific vital signals are recorded
as time sequences, such is the case of electrocardiograms, for example. More sophisticated
medical imaging devices (X-rays, magnetic resonance imaging, etc) visualize the status of
organs or body parts by means of a series of images. As the amount of data collected grows
in size, the development of algorithms allowing medical staff to automatically screen the
information contained in the stored data becomes essential. This task faces additional
challenges, since hospital records usually display non homogeneous data measured over
irregular time periods.

The applicability of machine learning techniques in specific medical contexts involving
large data amounts is an active area of research nowadays. Neural networks, for instance,
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are sometimes used for image-based diagnosis [1, 2], while unsupervised and supervised
classification techniques [3] are nowadays exploited to study the role of genes in sickness
[4, 5] and to investigate the response to treatment [6]. However, the amount of data avail-
able in many medical situations is scarce [7–9]. In the search for a diagnosis, one can resort
to different procedures. Here, we will focus on diagnosis by pattern comparison. In prin-
ciple, a diagnosis could be made by comparing the patient’s clinical profile with that of
different diseases and selecting the most similar ones. However, even if a patient has a dis-
ease, he does not need to display all symptoms, and many signs are common to different
diseases. In this respect, the selection of key variables and the introduction of adequate
comparison criteria become essential issues.

Here, we develop mathematical tools for automatic screening of data stored in the form
of numerical time sequences or matrices and illustrate the results in two medical contexts:
diagnosis of systemic lupus erythematosus (SLE) patients and identification of cardiac ab-
normalities. This article is organized as follows. First, we introduce distances which are
helpful to compare different kinds of data. Then, we explain how to adapt Plackett-Luce
models for rankings to select the most appropriate distances or hyperparameters when
classifying data. We adapt these ideas to study data from anonymized SLE patients from
two viewpoints. We initially take a clustering approach to find the onset of flares periods
that require immediate medical attention. Next, we switch to a supervised classification
approach to find daily patterns in the data representing a known sickness profile. Finally,
we discuss applications to classify electrocardiogram patterns by comparing them with
typical abnormal profiles and present our conclusions.

2 Distances for data
Consider a matrix M = (mi,j), i = 1, . . . , I , j = 1, . . . , J , containing data for I variables at J
different times. We denote by m(k), k = 1, . . . K , either the rows or the columns of this
matrix, which we wish to compare. The Euclidean distance provides a standard tool to
that purpose. Given two vectors m(1) and m(2) in a N dimensional space, their Euclidean
distance is

d
(
m(1), m(2)) =

∥∥m(1) – m(2)∥∥
2 =

( N∑

n=1

∣∣m(1)
n – m(2)

n
∣∣2

)1/2

. (1)

We can define the Hamming distance for simple vectors whose components are taken
from alphabets with 2 or 3 elements. The Hamming distance between two vectors m(1),
m(2) whose components are –1, 0 or 1, for instance, is the number of positions at which
the symbols are different. This distance is often used in communications to detect and
correct errors in codes [10].

The dynamic time warping distance (TWD) provides an alternative method to quantify
the similarity between two general data vectors [11, 12]. It has become a standard tool for
analysing video, audio, and graphics data, with applications such as speech or signature
recognition. The TWD algorithm seeks an optimal match between two given vectors (time
sequences, for instance), subject to some conditions:

• Every index from the first vector is matched with one or more indices from the second
vector and vice versa.

• The first index from the first vector is matched with the first index from the second
vector (it does not need to be a unique match).
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Figure 1 Dynamic time warping distance (a) versus Euclidean distance (b)

• The last index from the first vector is matched with the last index from the second
vector (it does not need to be a unique match).

• The mapping of the indices from the first vector to indices from the second vector is
monotonically increasing, and vice versa.

The idea is illustrated in Fig. 1. We define a cost by computing the sum of absolute differ-
ences of vector values for each matched pair of indices. The optimal match minimizes the
cost subject to the above conditions.

The TWD can be calculated by dynamic programming based on cumulative distances
as follows. Let m(1) and m(2) be two vectors with N and L components, respectively. Let
d(x, y) be a distance between real numbers, for instance, the absolute value of the dif-
ference d(x, y) = |x – y|. We create a matrix TWD(n,�) for n = 0, . . . , N , � = 0, . . . , L. We set
TWD(n, 0) = ∞ for n = 0, . . . , N , TWD(0,�) = ∞ for � = 0, . . . , L, and TWD(0, 0) = 0. Then,
for n from 1 to N and � from 1 to L, we calculate

TWD(n,�) = d
(
m(1)

n , m(2)
�

)

+ min
{

TWD(n – 1,�), TWD(n,� – 1), TWD(n – 1,� – 1)
}

, (2)

where TWD(n,�) represents the distance between subsequences m(1)
1 , . . . , m(1)

n and m(2)
1 ,

. . . , m(2)
� . The final result TWD(N , L) defines the distance between the two vectors. Fig-

ure 1 illustrates the difference between the Euclidean (1) and the dynamic time warping
(2) distances.

The Earth Mover’s distance (EMD) is a more general concept, which quantifies the min-
imum cost of turning a collection of numeric values into another [13]. More precisely, the
EMD between two vectors m(1) and m(2) formed by N and L real values, respectively, is

EMD
(
m(1), m(2)) =

∑N
n=1

∑L
�=1 fn,�dn,�

∑L
�=1

∑N
n=1 dn,�

, (3)

where dn,� = |m(1)
n –m(2)

� | is the ground distance, and fn,� minimizes the cost
∑N

n=1
∑L

�=1 fn,�×
dn,� subject to the constraints

fn,� ≥ 0, 1 ≤ n ≤ N , 1 ≤ � ≤ L,

N∑

n=1

fn,� ≤ 1, 1 ≤ � ≤ L,
L∑

�=1

fn,� ≤ 1, 1 ≤ n ≤ N ,
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N∑

n=1

L∑

�=1

fn,� = min(N , L).

This distance tracks patterns in the compared vectors, regardless of their location.
Instead of tracking vectors, we may as well compare whole matrices. This can be done

by a general family of distances, called Wasserstein type distances. As the EMD, their cal-
culation is posed as optimal transport problems. Optimal transport plays crucial roles in
many areas, including image processing and machine learning. Fast algorithms to calcu-
late Wasserstein-1 distances between distributions defined on a grid are proposed in [14].
Given two 2D probability distributions, or two images, ρ0 and ρ1, they seek a transport
plan f (x) from one to the other with minimal cost

min
f

∫

x

∥∥f (x)
∥∥

p dx (4)

such that divergenceh(f ) = ρ0 – ρ1 under a zero-flux boundary condition. Here, p can be
1,2 or infinity, so that ‖f (x)‖p represents the L1, L2 or L∞ norms of f (x), respectively, h is
the grid step size and divergenceh a divergence operator defined on the grid, see [14] for
details.

3 Distance and hyperparameter selection based on models for rankings
To evaluate which distance or hyperparameter choice performs better when classifying
data of a different nature, we resort to Plackett-Luce type models for rankings. We can
implement different approaches depending on the ranking structure.

3.1 Bayesian approach with Plackett-Luce ranking models
Consider a situation in which we have to judge the performance of N procedures
{proc1, . . . , procN } on D sets of data {dat1, . . . , datD} of a similar nature. For instance, we
wish to know which distance and hyperparameter choices perform best to extract specific
information from the datasets through learning algorithms. To do so, we select D datasets
for which the information we seek is known, apply the N procedures and quantify the
error in the outcomes.

Excluding the possibility of ties, when we apply all the procedures to a dataset we obtain
a ranking ρ = (ρ1, . . . ,ρN ), that is, a permutation of (1, . . . , N) where ρi = j indicates that the
i-th procedure is ranked at the j-th position [15, 16]. The procedure ranked first performs
better than the procedure ranked second, and so on. To each ranking, we associate another
permutation of (1, . . . , N) which defines an ordering σ = (σ1, . . . ,σN ), where σi = j indicates
that the j-th procedure is ranked at the i-th position.1 Orderings and rankings are related
by σρi = i and ρσi = i, that is, the ordering is the inverse of the ranking.

We can describe the probability of observing a ranking ρ by means of the Plackett-Luce
(PL) model, a distribution over rankings expressed in terms of the associated orderings σ

and parametrized by a vector w = (w1, . . . , wN ), wi ≥ 0, i = 1, . . . N [15, 16]. The conditional

1Some authors use a different terminology [17], speaking of ‘performance’ and ‘ranking’, a ‘ranking’ being in fact an ‘order-
ing’.
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PL probability of observing σ given w is

PPL(σ |w) =
N∏

i=1

wσi∑N
k=i wσk

. (5)

The probability of having σ1 = j, that is, the j-th procedure being the best, is wj
∑N

k=1 wk
[16].

Assuming
∑N

k=1 wk = 1, the parameters of the model represent the probability of each of
the different procedures under consideration being the best. Given a set of observations
O formed by D independent orderings σ , the conditional probability of observing this set
is the product of the probabilities of each of the orderings:

P(O|w) =
∏

σ∈O
PPL(σ |w). (6)

We identify the model parameters w from the observations by Bayesian inference. By
Bayes’s theorem

P(w|O) =
P(w) · P(O|w)

P(O)
, (7)

where P(w) is a probability distribution summarizing our prior knowledge on w. By sim-
plicity, we assume that the sum of its components is 1. We choose a Dirichlet distribution
P(w) = Dir(w;α) [17], though other choices are possible [16]. The Dirichlet distribution of
order N ≥ 2 has a density function

f (w1, . . . , wN ;α1, . . . ,αN ) =
1

B(α)

N∏

i=1

wαi–1
i , B(α) =

∏N
i=1 �(αi)

�(
∑N

i=1 αi)
, (8)

where
∑N

i=1 wi = 1, wi ≥ 0 for i = 1, . . . , N , and � denotes the � function. In the absence
of additional information, we choose a uniform distribution for α, that is, αi = α = 1, i =
1, . . . , N . This is the flat Dirichlet distribution, equivalent to a uniform distribution over
the open standard (N –1) - simplex [18].

With these definitions, we can sample the unnormalized posterior distribution Q(w) =
P(w) · P(O|w) using Markov Chain Monte Carlo (MCMC) methods [19]. Note that the
unknown scaling factor P(O) in (7) is not needed for MCMC sampling. From the samples,
we obtain information on the most likely values for w with quantified uncertainty, thus,
we infer which procedure is the best.

MCMC methods produce a chain of N-dimensional states w(0) −→ w(1)... −→ w(k)...
which evolve to be distributed according to the target distribution [19]. We first sample
an initial state w(0) from the prior distribution (8), and then move from one state w(k) to
the next w(k+1) guided by a transition operator. We have selected a Hamiltonian Monte
Carlo transition operator because it usually samples the distributions faster than other
samplers, such as Metropolis-Hastings [20]. We set U(w) = Q(w) (the probability to be
sampled), K(p) = 1

2 ptp and construct the Hamiltonian H(w, p) = U(w) + K(p). We draw
a random Gaussian moment p(0) ∈ R

N from a multivariate normal distribution N(0,I),
where the covariance matrix is the identity. Then, the transition proceeds as follows:
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• Given w(k) and p(k), we use them as initial values to solve the Hamiltonian equations
∂wj
∂t = ∂H

∂pj
, ∂pj

∂t = – ∂H
∂wj

, j = 1, . . . , N , by a leap frog algorithm for L steps of size δ. The
final values define w∗ and p∗, the new proposed states for the chain.

• We calculate α = min(1, exp(–U(w∗) + U(w(k)) – K(w∗) + K(w(k))).
• We generate a random number u from a uniform distribution U (0, 1). If u ≤ α, we

accept the proposed states and set w(k+1) = w∗. Otherwise, we keep w(k+1) = w(k).
The final chain w(0), w(1), . . . , w(M) provides our set of samples, after discarding some initial
states as a ‘burn in’ period. Once a large enough set of sampled weights is available, the
sample with the highest probability furnishes the most likely value for w. Histograms or
Boxplots built with the additional samples quantify the uncertainty in this prediction.

The above procedure excludes the presence of ties in the rankings under study. When
some of the items to be ranked perform equally well on a dataset, the ordering takes the
form σ = {C1, C2, . . . , CJ}, containing sets Cj with one or more items equally ranked, the
items in each set being ranked higher than the next. When the ranking matrix contains
ties, we can break randomly the ties T times, to obtain T new ranking matrices without
ties. We apply to each of them the previous procedure and average the results provided for
each of them to obtain average weights wi indicating the prevalence of each ranked item.
This procedure quantifies the tendency of the ranked item to be not only the first, but to
appear in relevant positions, see [21] for a detailed study.

3.2 Davidson-Luce models with ties
The Davidson-Luce model [22, 23] works directly with rankings that may contain tied
items. As said above, the associated orderings take the form σ = {C1, C2, . . . , CJ} where
Cj are sets of tied items, the items of each set being ranked higher than the next. For
instance, consider 6 choices labelled as {1, 2, 3, 4, 5, 6}. Choices C1 = {1, 3} perform equally
well. Choices C3 = {2, 5, 6} too, but worse that C1. An ordering σ = {C1, C2, C3} with C2 =
{4} would represent that observation when C2 is better than C3 one but worse than C1.

In this framework, the probability of the choices A = {ai1 , . . . , ai�} being equally preferred
to the remaining choices in a set of r total choices, 1 ≤ � ≤ r, is proportional to

q(A) = δ|A|
(∏

j∈A

αj

)1/|A|
, (9)

where |A| = � is the number of elements in A, αj is the worth of choice aj and δ|A| ≥ 0 is
a parameter representing the prevalence of ties of order |A| for |A| > 1. When |A| = 1, δ1

can be set arbitrarily equal to 1. The remaining worths and prevalences are parameters to
be fitted. The worths αj are interpreted as follows: conditional upon the outcome being an
outright win for one choice, the probabilities for each choice to be the winner are in the
ratios indicated by the αj [22, 23]. When

∑
j αj = 1, the worths represent the probability

of each choice being the best assuming there is no tie in the first position. The probability
of preferring an item aj from a set S is αj/

∑
k∈S αk , j ∈ S. The parameters representing

tie prevalences δ|A| are interpretable in terms of tie probabilities between items of equal
worth. For instance, δ2 is related to the probability that two items of equal worth tie in the
first position, conditional upon not having 3-way or higher ties for first place. To be more
precise, that probability is δ2/(2 + δ2), see [22, 23].
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Then, the probability of an ordering σ = {C1, C2, . . . , CJ} allowing for ties up to order K
is given by

pDL(σ ) =
J∏

j=1

q(Cj)
∑min(|Aj|,K )

k=1
∑

S∈
(Aj

k

) q(S)
, (10)

where q(S) is defined in (9), Aj is the set of items from which Cj is chosen and
( Aj

k

)
is the set

of all possible choices of k items from Aj. The parameter K equals the maximum number
of ties encountered, so that δn = 0 when n > K . The Plackett-Luce model is a particular case
in which ties are forbidden, δ|A| = 0 for |A| > 1. Given a matrix of independent observations
O, its probability is defined as the product of the probabilities (10) of each observation.

In this case, the worths and tie prevalences are fitted by Broyden-Fletcher-Goldfarb-
Shanno quasi-Newton optimization algorithms (BFGS, L-BFGS) for functions involving
a large number of parameters, more complicated to implement than the Bayesian ap-
proach. Moreover, some parameter tuning or additional prior information may be needed
to converge to a fit [22, 23]. Once they are calculated, we know the probabilities that an
item is best conditional upon being one absolute win or also including different kinds
of ties. It is the sum of the probabilities of all the rankings placing that item in the top
set. For instance, considering {a1, a2, a3} we have 7 possible outcomes for the first posi-
tion: 3 absolute winners ({a1}, {a2}, {a3}), 3 double ties ({a1, a2}, {a1, a3}, {a2, a3}) and one
triple tie ({a1, a2, a3}), with probabilities proportional to α1, α2, α3, δ2(α1α2)1/2, δ2(α1α3)1/2,
δ2(α2α3)1/2, δ3(α1α2α3)1/3. The DL model provides 7 probabilities that sum up to 1 in those
proportions. The probability of a1 being best including ties is the probability of having
the outcomes {a1}, {a1, a2}, {a1, a3} or {a1, a2, a3}. This strategy gives more value to being
placed in the first position most of the time than to being usually placed at good positions.
The R package [23] implements this scheme and provides standard errors indicating the
precision of the estimates, which are not always useful due to overlaps.

4 Application to laboratory data from systemic lupus erythematosus
Laboratory tests constitute a cornerstone of the diagnosis process for many health dis-
orders: blood counts, enzyme, hormone, metabolic, ionic, protein, vitamin and antibody
levels are measured at different times. Developing automatic tools to trace key features in
the resulting numeric matrices can help to interpret the data, specially when dealing with
disorders which are difficult to diagnose. Consider systemic lupus erythematosus (SLE),
for instance, a chronic autoimmune disease in which the immune system attacks healthy
tissues by mistake [24]. This attack causes inflammation and, in some cases, permanent
tissue damage. SLE is difficult to identify and treat appropriately because many symp-
toms are non specific and change throughout the course of the disease. Lupus patients
go through periods of illness, called flares, and periods of wellness, called remission. The
symptoms during flares vary. It is essential to be able to distinguish early when the patient
is transitioning from remission to flares, and what factors are causing it, to timely admin-
ister adequate treatments. As it happens with other diseases, SLE diagnosis relies heavily
on alterations observed in laboratory tests.

Next, we propose a procedure to extract automatically relevant features from time series
of laboratory tests. The idea is as follows. First, we apply clustering techniques to locate
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relevant time frames and then seek specific patterns in the data to select a possible diagno-
sis, resorting to adequate distances. Finally, we will illustrate the process on anonymized
data from SLE patients.

4.1 Clustering time records
Let us consider a matrix M collecting the results of laboratory tests for a patient during
a series of days. We monitorize I variables (rows) at J times (columns). To analyze time
variations, we normalize the data as follows. For each variable i = 1, . . . , I , we calculate the
mean μi and the standard deviation σi of the corresponding row mi,j, j = 1, . . . , J . Then, we
construct the normalized matrix with elements

m̃i,j =
mi,j – μi

3σi
, i = 1, . . . , I, j = 1, . . . , J , (11)

most of which lie in [–1, 1], see Fig. 2. This procedure defines Normalization 1. This nor-
malization is useful to visualize time periods in the data. Figure 2, for instance, suggests a
period of strong instability between days 810-868.

Datasets are often incomplete, as Fig. 2 shows. For day clustering purposes, we adopt
the convention of suppressing rows (variables) for which more than half the recordings
are missing. Otherwise, we fill the gaps with the average of the two contiguous values. We
also remove rows corresponding to variables which do not change noticeably during the
studied period [21]. The outcome is represented in Fig. 3 for the remaining 60 variables.
The 5 variables comprised between Glucose and Nitrites are removed because they re-
main essentially zero. Nevertheless, their presence does not affect the clustering results.
One could additionally remove days for which less than half the variables are recorded,
as it happens for day 850. However, the measurements recorded just before and after it
are taken in a narrow time gap compared to other measurements present in the datasets,
thus, interpolating between the two neighbouring days seems reasonable. For days 526 and
565, the variation between the values recorded before and after them is small. Keeping or
removing these days does not change significantly the analysis either.

We identify automatically different time stages in the evolution of the patient by means
of clustering techniques such as K-Means (KM) [25], Hierarchical clustering (HC) [26]
and density-based spatial clustering of applications with noise (DBSCAN) [27], applied
to the normalized matrix (11) with the Euclidean distance and different hyperparameter
selections. We set as initial day of a flares period the first day of the shortest cluster for
KM and HC and the smallest outlier for DBSCAN with different hyperparameters [21].
For ease of the reader, we briefly describe these clustering algorithms in Appendix A.

To select the most adequate clustering procedure for the kind of data we are working
with we first study a collection of datasets which have already been diagnosed. We have
considered anonymized data from 19 patients containing one flares period whose starting
day is known. The strategy is as follows:

• For each dataset, we normalize the raw data matrix according to (11).
• We apply to the columns KM and HC, setting different numbers of clusters, and also

DBSCAN for different choices of ε (smallest distance for points to be considered
neighbours) and MP (minimum number of points to be considered a cluster).

• For each dataset, we compare the prediction obtained for the onset of the flares period
with the known onset day. Then, we rank the procedures according to the difference
between both.
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Figure 2 Heatmap representing the outcome of Normalization 1, which allows us to establish stages in the
time evolution. Cold and warm colors indicate variables below and above the average values for this patient,
respectively. Black boxes indicate missing data. Variables ending in B correspond to blood tests, while those
ending in U correspond to urine tests

• If the resulting matrix of rankings does not contain ties, we use the Plackett-Luce
model (6)-(8) to obtain the worths w representing the probability of each clustering
procedure to provide the best estimate of the onset of flares and to quantify the
uncertainty in this result.

• If the resulting matrix of rankings contains ties, we can break the ties randomly and
average the results provided by (6)-(8) for a large number of attempts, as detailed in
[21]. Alternatively, we can use the Davidson-Luce model (9)-(10) to obtain the worths
w and tie prevalences δ. Then we use them to estimate the probability of each
clustering procedure being the best counting all the possible outcomes (alone or tied).

We have implemented this scheme setting the number of clusters equal to 3, 4, 5 in KM
and HC, and DBSCAN with ε = 3, 3.5 and MP = 3. The resulting ranking matrices contain
ties. However, our ranking analysis tends to select HC with 4 clusters as the best strategy,
followed by HC with 3 clusters. This study is further detailed in Appendix B. For the data
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Figure 3 Heatmap representing the 60 variables remaining in Normalization 1 after suppressing 7 variables
for which more than half the recordings are missing and 5 variables which do not change noticeably during
the studied period, interpolating to fill the remaining gaps

Figure 4 Dendrogram constructed by hierarchical clustering using the Euclidean distance and average
linkage. Numbers 1-29 correspond to the 29 observations reported in Fig. 2, keeping the same order

represented in Fig. 2, this strategy singles out automatically days 858-862 (flares crisis),
and splits the remaining days into three periods 1-850 (pre-flares), 868-930 (treatment),
930-1219 (post-flares), see Fig. 4.

Detecting distinguished days, or blocks of similar days, allows us to focus our study on
the status of the variables on the specific days which mark transitions from remission to
flares, or on specific periods to identify types of flares and observe the response to treat-
ment. For example, if we focus in the suspected flares period in Fig. 2, we notice a sharp
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increase in anti-dsDNA antibodies on day 810 and a sharp decrease of the red blood cell
counts, hemoglobin and hematocrit measurements after it. We also observe an increase in
creatinine in blood and the presence of leukocytes in urine. Searching for specific patterns
in the data during the selected days may help us to propose a diagnosis, as we explain in
the next section.

4.2 Daily pattern search
To this purpose, we renormalize the raw data matrix M in a different way. Assuming nor-
mality ranges for the variables are known, we construct a normalized matrix with elements
m̂i,j replacing mi,j with 1 or –1 depending on whether the original values are above or be-
low the normality ranges of the i-th variable, and 0 when they are in the normality range,
see Fig. 5. When the information stored is binary, either ‘true’ or ‘false’, we replace it by
either 1 (positive, true) or 0 (negative, false). This defines Normalization 2.

Figure 5 Heatmap representing the outcome of Normalization 2, allowing us to identify relevant illness
patterns. We appreciate which variables usually lie outside laboratory ranges of normal values (1 above, –1
below, 0 inside) and which ones exit this range occasionally. Black boxes indicate missing data and variables
for which we do not have the normality range (such is the case when the entire row is black)
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Many disorders can be characterized as simple –1, 0, 1 patterns, or combinations
thereof:

• Normocytic anemia: –1 Hemoglobine in blood, 0 Mean corpuscular velocity.
• Hypocomplementemia C3, –1 C3 in blood, and Hypocomplementemia C4, –1 C4 in

blood. They usually indicate active SLE.
• Leukopenia: –1 Leukocytes in blood. It usually indicates active SLE or infection or

medication effects.
• Neutropenia: –1 Neutrophiles in blood. It usually indicates active SLE or infection or

medication effects.
• Lymphopenia: –1 Lymphocytes in blood. It usually indicates active SLE or infection.
• High Anti-dsDNA antibodies: +1 Anti-dsDNA, the most relevant antibody for SLE.
• High Creatinin: +1 Creatinin in blood. It usually indicates kidney failure.
• Pathological proteinuria: +1 Proteins in urine. It usually indicates inflammation of the

renal glomerulus or tubular damage.
• Hyperglycemia: +1 Glucose in blood. It may be due to the use of corticosteroids, or a

sign of Diabetes Mellitus.
• Hypercholesterolemia: +1 Cholesterol LDL in blood. Risk factor to be treated, as

associated with hypertension and corticosteroids increases cardiovascular risk.
• Suspicion of hemophagocytic syndrome: –1 Hemoglobin or –1 Leukocytes or –1

Neutrophils or –1 Lymphocytes or –1 Platelets in blood, plus large ferritin counts,
and large triglycerid or small fibrinogen counts in blood. It is a complication of
sustained severe inflammatory states, including SLE.

The combinations of –1, 0, 1 patterns observed in distinguished days mark specific types
of evolution.

To select the most adequate distance to this purpose, we have compared the perfor-
mance of the Euclidean distance, the Earth Mover’s distance and the Hamming distance
to identify definite patterns formed combining 1, 0 and –1 in columns containing those
digits. We propose a collection of P patterns and distribute them in the columns of a I × J
matrix, filling the remaining positions with the digits –1, 0, 1. Then we calculate the dis-
tances between the columns and the reference patterns, and rank the distances according
to their performance. Implementing a Plackett-Luce model ranking analysis, we conclude
that the Hamming distance is by far the most efficient one. This strategy is detailed in
Appendix C.

Once this fact has been established, the ‘automatic diagnosis’ strategy is as follows:
• For a given dataset, we normalize the raw data matrix to obtain a matrix involving

only –1, 0, 1 according to the normality ranges of the observed variables.
• We compare the status of the variables in given columns corresponding to specific

days with known sickness patterns defined by –1, 0, 1 sequences using the Hamming
distance.

In this way, we can screen large datasets selecting patient profiles requesting immediate
attention, while providing at the same time a simplified diagnosis that should receive fur-
ther consideration from a specialist. For instance, for the dataset considered in Figs. 2 and
5, we identify SLE activity indicated by elevated anti-dsDNA and low C3 and C4 com-
plements. We identify low hemoglobin and hematocrit levels suggesting an anemization
(normocytic anemia) process as a result of illness. Alterations in the glomerular filtra-
tion rate and presence of proteins in urine indicate alterations in the kidney function too.
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High creatinine values at days 810 and 858 indicate kidney damage and require immediate
treatment to restore normal values.

5 Application to electrocardiogram interpretation
When a specific variable is recorded for an interval of time, the data take the form of
curves. Often, typical patterns representing normal stages and abnormal stages are known.
Developing automatic screening tools can assist doctors in processing such data. Consider
electrocardiograms (ECG) for instance. An electrocardiogram is a graph of the electrical
activity of the heart [28] representing voltage versus time, see Fig. 6. They are recorded
placing electrodes on the skin, which detect small electrical changes resulting from car-
diac muscle depolarization and repolarization during each heartbeat (cardiac cycle). Alter-
ations in the ECG pattern indicate cardiac abnormalities. Numerous diagnoses are based
on the observed patterns. Producing effective tools to automatically identify cardiac pat-
terns would allow for the proper use of defibrillators when untrained emergency staff as-
sists people going into cardiac arrest at work or leisure centers. Currently, it is hard to
succeed in the absence of an expert doctor who interprets the signs.

Our goal in this section is to introduce an automatic procedure to identify alterations
in patterns described by one dimensional curves. The idea is as follows. We first define a
set of normalized reference curves corresponding to different known pathologies. Given
another curve normalized in the same way, we compare it with the reference patterns by
means of an adequate distance. The smallest distance selects a possible diagnosis. We will
illustrate the process on examples taken from electrocardiography.

5.1 Electrocardiogram structure and basic alterations
Electrocardiograms repeat periodically the structure represented in Fig. 6. Different re-
gions are designed by P, Q, R, S and T [29]:

• P wave: The first wave in the ECG represents atrial depolarization. Usual length is
shorter than 0.11 s in adults. Usual amplitude is smaller than 0.25 mV. Its shape is
smooth and rounded.

Figure 6 (a) Original ECG, represented in the standard red grid paper. Ten boxes represent 10 mm = 1 mV in
the vertical direction and 0.4 s in the horizontal direction. (b) Representation of an ECG extracted from (a). The
labels in the vertical and horizontal axes represent positions in the matrix defining both images and indicate
the number of points defining the curve
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• QRS complex: It is formed by a sequence of waves representing ventricular
depolarization. Usual duration is about 0.06 s - 0.10 s. A small negative wave Q is
followed by a large positive R wave and a small negative S wave.

• T wave: The next wave represents ventricular repolarization. Usual length is shorter
than 0.20 s in adults. Usual amplitude is between 0.2 and 0.3 mV. Its shape is smooth
and rounded.

• U wave: This last tiny wave is believed to represent papillary muscle repolarization. It
may not be seen, and is often ignored.

The P wave and the QRS complex are separated by the PR segment, while the ST segment
separates the QRS complex and the T wave. The P wave with the PR segment form the
PR interval. The QRS complex, the ST segment and the T wave form the QT interval.
Variations in the heart’s structure and its environment (blood composition included) al-
ter these entities. The presence, absence and size of the different ECG parts characterize
different cardiac abnormalities, comprising cardiac rhythm disturbances (such as ventric-
ular tachycardia and atrial fibrillation), perturbed coronary artery blood flow (such as my-
ocardial infarction and myocardial ischemia), as well as electrolyte disturbances (such as
hyperkalemia and hypokalemia).

We select a few representative patterns to illustrate the method:
• A normal ECG repeats the basic P-Q-R-S-T structure corresponding to one heartbeat

at a rate between 60 and 100 beats per minute (bpm)
• Sinus tachycardia is a heart rate greater than 100 beats per minute. This is normal

with exercise, but abnormal otherwise.
• Sinus bradycardia is a sinus node dysfunction with a rate under 60 beats per minute.
• Sinus arrhythmia is an irregular heartbeat that can be either too fast or too slow. It is

characterized by variations in the P-P intervals greater than 0.12 s (from one beat to
the next).

• QT prolongation is a sign of delayed ventricular repolarisation. This means that the
heart muscle takes longer than usual to recharge between beats. It is a known side
effect of a wide range of medicines. Excessive QT prolongation can trigger
tachycardias and torsades de pointes (TdP).

• Torsades de Pointes is a ventricular tachycardia, fast and polymorphic, characterized
by fluctuation of the QRS complexes around the electrocardiographic baseline. It may
lead to life-threatening ventricular fibrillation.

To compare ECGs we must normalize them somehow. ECGs are usually recorded in red
grid paper, see Fig. 6. Panel (a) displays a standard printed ECG. There is an established
correspondence between the number of squares and the units (mm, mV, s). Such an im-
age, or portions of the image, can be read as a matrix of a size adjusted to the resolution.
From that matrix, we extract only the locations corresponding to black points forming the
curve. When several ordinates correspond to the same abscissa, we keep only one ordi-
nate: their average value. Panel (b) represents the outcome of this procedure applied to
part of panel (a), indicating the different ECG regions. Additionally, we have normalized
heights by setting the first point of the curve at zero. Figure 7 collects reference patterns
for the abnormalities under consideration obtained from diagnosed ECGs, available in
open access image datasets, such as [30]. We have considered regions defined by the same
number of red squares and extracted the ECG curves by the same procedure, choosing a
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Figure 7 Normalized and nondimensionalized reference ECG patterns

smaller matrix size (a factor 10 smaller). One this is done, we need to choose appropriate
distances to compare patterns.

5.2 Electrocardiogram classification
This section illustrates how to use TWD, EMD and Wasserstein distances to classify ECG
patterns. Figure 8 shows a set of normalized ECGs we want to classify as displaying a
kind of abnormality or another. To do so, we select a distance and calculate the distances
between these ECG and the reference patterns displayed in Fig. 7. Then, we propose a
diagnosis based on the smallest value obtained for each of them.

Tables 1 and 2 reproduce the distance matrices obtained for the TWD and the one
dimensional EMD. Tables 3 and 4 reproduce the distance matrices for the 2D image
Warssentein-1 distance with Algorithm 1M and Algorithm 2M from [14], respectively,
and the 1-norm (p = 1). Choosing the norms for p = 2 or p = ∞ we find the same classifi-
cation.
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Figure 8 Normalized and rescaled ECGs to be diagnosed by comparison with the reference patterns
collected in Fig. 7

To visualize the strategy’s performance, we create Table 5, whose entries are 1 when
patient i is correctly diagnosed by distance j and 0 otherwise. Notice that the TWD per-
forms better, and classifies all the patients correctly. Then the Wasserstein-1 distance cor-
rectly classifies four out of five patients. The ECG of the patient who is misclassified dis-
plays bradycardia and is classified as QT prolongation, which could be confused with slow
rhythms.

To better evaluate the performance of different distances, we have studied a larger col-
lection of 100 electrocardiograms obtained by perturbing the reference patterns. We can
construct ranking and observation matrices by comparing each of them with the reference
ECG patterns using the TWD, EMD and Wasserstein distances. Then, we check whether
the proposed diagnosis is correct or not. Implementing a Plackett-Luce model ranking
analysis, we conclude that the dynamic time warping distance would be the most efficient
one for this dataset. However, this synthetic dataset is quite limited. Testing the method
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Table 1 Distances between ECG patterns and ECGs from patients calculated using TWD and
proposed diagnosis, based on the smallest distance

Pattern\Patient 1 2 3 4 5

Normal ECG 772 414 9974 327 663

Sinus tachycardia 1807 539 10,046 413 197

Sinus bradycardia 1086 259 10,381 113 277
Sinus arrythmia 2099 1120 8550 1105 975

QT prolongation 1379 236 10,174 313 378

Torsades de pointes 10,170 9852 5939 9862 8947

Diagnosis Normal long QT TdP Bradycardia Tachycardia

Table 2 Distances between ECG patterns and ECGs from patients calculated using EMD and
proposed diagnosis, based on the smallest distance

Pattern\Patient 1 2 3 4 5

Normal ECG 175.9249 95.9059 273.9574 108.5616 79.0234

Sinus tachycardia 65.2876 79.0439 139.7507 74.7188 77.9492

Sinus bradycardia 60.6457 76.1689 172.1750 72.2178 67.4229
Sinus arrythmia 191.0266 121.2034 290.5680 108.8583 76.6855
QT prolongation 135.7548 116.9913 194.5916 104.3210 72.2278
Torsades de pointes 473.4429 309.0894 542.9015 278.8493 131.6373

Diagnosis Bradycardia Bradycardia Tachycardia Bradycardia Bradycardia

Table 3 Distances between ECG patterns and ECGs from patients calculated using Wassertein-1
distances (Algorithm 1M in [14] with p = 1) and proposed diagnosis, based on the smallest distance

Pattern\Patient 1 2 3 4 5

Normal ECG 0.2543 0.2703 0.1886 0.2635 0.4157

Sinus tachycardia 0.4474 0.2907 0.3775 0.3028 0.0070
Sinusal bradycardia 0.4240 0.1817 0.3483 0.1982 0.2033
Sinus arrythmia 0.3225 0.2087 0.2032 0.2088 0.3347

QT prolongation 0.3959 0.0588 0.3167 0.0732 0.2271

Torsades de pointes 0.2796 0.1671 0.1317 0.1639 0.241

Diagnosis Normal long QT TdP long QT Tachycardia

Table 4 Distances between ECG patterns and ECGs from patients calculated using Wassertein-1
distances (Algorithm 2M in [14] with p = 1) and proposed diagnosis, based on the smallest distance

Pattern\Patient 1 2 3 4 5

Normal ECG 0.2615 0.2761 0.1867 0.2678 0.4197

Sinus tachycardia 0.4596 0.2885 0.3757 0.3033 0.0070
Sinus bradycardia 0.4349 0.1824 0.3481 0.1974 0.2043
Sinus arrythmia 0.3313 0.2082 0.2024 0.2090 0.3351

QT prolongation 0.4069 0.0601 0.3153 0.0745 0.2252

Torsades de pointes 0.2791 0.1673 0.1313 0.1646 0.2410

Diagnosis Normal long QT TdP long QT Tachycardia

on more general curves should be the object of further work, but it would require the
previous obtention of an extensive collection of diagnosed authentic EGC images.
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Table 5 Correct diagnosis using TWD versus correct diagnosis using EMD and Wasserstein distances

Patient TWD EMD Wasserstein-1

1 1 0 1
2 1 0 1
3 1 0 1
4 1 1 0
5 1 0 1

Success Score 5 1 4

6 Conclusions
The design of automated tools for detecting abnormalities in a patient’s clinical picture
offers an excellent opportunity to improve clinical case management and clinical research
by developing new algorithms and software.

Medical data are usually stored in the form of matrices or sequences. Time sequences
of results of Laboratory tests, for instance, take the form of numerical matrices. We have
discussed two different types of normalization, one related to average values for unsuper-
vised learning, and the other related to normal ranges for supervised classification. First,
we show how to use clustering techniques to distinguish periods of medical relevance in
the time evolution of a SLE patient. In particular, we locate flares periods which require
immediate medical attention. Then, we illustrate how to propose a possible diagnosis by
seeking specific numeric patterns in each period according to the second normalization.
Using Hamming distances to compare the outcome of Laboratory analyses at different
days, or for different patients, one could automatically classify patient’s profiles.

On the other side, recordings of vital signals, such as electrocardiograms, take the form
of time sequences, usually represented as curves. We propose a strategy to identify abnor-
malities in recorded ECGs by comparing recorded curves to patterns representing typ-
ical anomalies. First, we introduce a normalization procedure. Then, we investigate the
potential of time warping, Earth mover’s and Wasserstein distances to correctly classify
basic abnormality patterns, finding a better performance for the dynamic time warping
distance on a synthetic dataset. Further studies would require the previous obtention of
an extensive collection of diagnosed authentic EGC images. Being able to correctly clas-
sify abnormal ECG patterns in an automated way would increase the chance of survival in
out-of-hospital treatments. It would allow for the proper use of defibrillators by untrained
emergency staff when assisting cardiac arrest cases at work or leisure centers.

In these studies, it is essential to select the distances and hyperparameters best adapted
to the datasets under consideration. We have introduced a Plackett-Luce ranking based
analysis as a tool to select the most adequate distances and hyperparameters to analyze
datasets with a specific structure. The techniques developed here may set a basis for au-
tomatic screening of medical information based on pattern comparison.

Appendix A: Clustering techniques
In this section we briefly recall the clustering techniques used to classify SLE data.

K-means [25] clusters data in groups in order to minimize the total intra-cluster vari-
ation, which measures the cluster compactness. Given a data cloud formed by points
xi = (xi,1, . . . , xi,M) in a M dimensional space, the intra-cluster total variation is given by
∑J

j=1 W (Cj) =
∑J

j=1
∑

xi∈Cj
d(xi,μj), where Cj is a cluster of such points and μj is the clus-

ter centroid, for j = 1, . . . , J . Each term W (Cj) represents the variation within a cluster.
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Here, the distance d stands for the Euclidean distance d(xi,μj)2 =
∑M

m=1(xi,m – μj,m)2. The
K-means algorithm proceeds in the following steps. We fix the number of clusters k to be
formed and initialize the centroids μj by randomly generating k points. Next, each datum
xi is assigned to the centroid minimizing the Euclidean distance. Within each cluster, we
set the average of the cluster points as the new centroid. These steps are repeated until
the clusters do not change. K-means needs one hyperparameter to proceed: the number
of clusters. There are specific criteria such as the Elbow or Silhouette methods to propose
a tentative cluster number.

Hierarchical clustering produces a multilevel hierarchy, in which clusters at one level
coalesce at the next level [26]. The agglomerative algorithm starts from as many clusters
as data points. Nearby clusters merge to create larger ones until all the data points form a
single cluster. This procedure is schematized in a dendrogram, a graph visualizing how the
clusters join until they form a tree that comprises all, see Fig. 4. To evaluate the proximity
of clusters and merge them, the algorithm employs ‘linkage functions’: ‘single’, ‘average’,
‘complete’, ‘weighted’, ‘centroid’, ‘median’, ‘ward’. Both the linkage functions and the dis-
tance are hyper parameters to be selected. Here, we have fixed the Euclidean distance and
implemented the linkage providing the biggest cophenetic correlation coefficient for these
datasets, that is, the biggest correlation between the original distance and the cophenetic
distance (the height at which clusters coalesce). Large correlation indicates that the tree
is representative of our dataset. The remaining hyperparameter, that is, the height, de-
termines the number of clusters. Cutting the tree at different heights, we select specific
numbers of clusters.

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm
[27] defines clusters in high density regions, leaving observations in low density regions
outside, which eventually become anomalies. The process starts with an arbitrary data
point that has not yet been classified. We find the points at a distance smaller than ε (the ε-
neighbourhood). When it contains more than a minimum number of points MP, we create
a new cluster with them. Otherwise, we consider that point as noise. However, this point
might become part later of the ε-neighbourhood of a different point containing enough
points, and, thus, belong to that cluster. If not, it remains an outlier. Thus, this algorithm
can identify non convex clusters and outliers. However, finding good values for the two hy-
perparameters ε and MP is a nontrivial task, strongly dependant on the dataset’s structure.
In principle, the distance has to be selected too, but we have fixed the Euclidean distance.

Appendix B: Stages in SLE patients’ medical records
This appendix summarizes some results obtained when applying the strategy described
in Section 4 to 19 time series of anonymized laboratory data of patients diagnosed with
SLE according to criteria of the European League against Rheumatism/American College
of Rheumatology [31]. The number of variables and days varies slightly within them. All
the datasets considered contained only one transition, and Hopkins criterion for them
indicated the presence of relevant clusters [32]: the Hopkins statistics H > 0.5. Table 6
quantifies the distance between the column of the normalized heatmap selected as onset of
flares after the clustering procedure and the true column corresponding to the diagnosed
day. HC stands for hierarchical clustering (3C with 3 clusters, 4C with 4 clusters) and
KM by K-means (with k clusters). DBSCAN uses parameters MP = 3 and ε = 3. Next,
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Table 6 Distances to the transition day for the different algorithms

Transition
days

KM
k = 3

KM
k = 4

KM
k = 5

HC
3C

HC
4C

DBSCAN
3,3

D15 0 2 4 0 2 0
D4 0 1 1 0 0 0
D9 0 6 6 9 9 2
D3 2 2 2 0 0 0
D1 2 2 0 2 2 0
D1 6 10 10 0 0 0
D16 6 6 9 19 19 15
D14 0 0 11 0 0 0
D5 0 1 1 0 0 0
D9 0 5 5 3 5 5
D19 0 0 16 17 0 17
D50 41 41 41 4 0 0
D1 3 0 0 0 0 0
D23 22 22 41 0 0 21
D17 0 9 9 0 0 12
D19 14 14 14 0 7 18
D11 6 0 0 0 0 4
D3 21 14 0 19 21 0
D12 11 0 0 11 0 10

Table 7 Rankings generated from the distances to transition days in Table 6

Dataset KM
k = 3

KM
k = 4

KM
k = 5

HC
3C

HC
4C

DBSCAN
3,3

1 1 4 6 1 4 1
2 1 5 5 1 1 1
3 1 3 3 5 5 2
4 4 4 4 1 1 1
5 3 3 1 3 3 1
6 4 5 5 1 1 1
7 1 1 3 5 5 4
8 1 1 6 1 1 1
9 1 5 5 1 1 1
10 1 3 3 2 3 3
11 1 1 4 5 1 5
12 4 4 4 3 1 1
13 6 1 1 1 1 1
14 4 4 6 1 1 3
15 1 4 4 1 1 6
16 3 3 3 1 2 6
17 6 1 1 1 1 5
18 5 3 1 4 5 1
19 5 1 1 5 1 4

we build the ranking presented in Table 7. We assign a higher position in the ranking to
smaller distances. The smallest possible distance is D = 0. Smallest distances rank first.
Ties here are represented assigning the same position to tied algorithms and freeing the
next positions in equal number. Following this convention, we obtain Table 7.

Finally, we illustrate the use of PL methods to determine the probability of each algo-
rithm being the best, as well as the uncertainty in our choice of algorithm.

Table 8 represents the results obtained combining the PL method with random tiebreak-
ing and averaging. These results indicate that hierarchical clustering with 4 clusters is
the algorithm performing best, with a probability of 21.30%. Next, it follows hierarchical
clustering with 3 clusters, with a 20.36% probability. DBSCAN appears with probability
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Table 8 Weights (probabilities) obtained for each method applying the Placket-Luce method to the
ranking in Table 7, after random triebreakers, and averaging the results. We average 100 runs
undoing ties randomly

KM
k = 3

KM
k = 4

KM
k = 5

HC
3C

HC
4C

DBSCAN
MinPts = 3, ε = 3

0.148702 0.137208 0.11005 0.20365 0.213026 0.187354

Figure 9 Boxplots illustrating uncertainty in the weight predictions given by Table 8 constructed with 106

samples

Table 9 Patterns selected by each distance for different trial sequences

Trial sequence Reference pattern d1 selection d2 selection d3 selection

1 1 1 1 1
2 2 2 1 2
3 5 5 5 2
4 3 3 2 3
5 4 5 4 1

18.73%. Figure 9 quantifies uncertainty using boxplots constructed from samples from
the 100 runs (1000 samples from each run).

A similar study can be performed allowing for ties by means of the Davidson-Luce
model. Next, we illustrate this procedure on distance selection.

Appendix C: Distance selection
This appendix illustrates how to select the best distance to compare sequences formed by
the digits –1, 0, 1. We consider 5 patterns containing 125 digits and up to 300 sequences
obtained changing randomly a few digits in such patterns. Thus, the underlying reference
pattern (the ‘diagnosis’) is known for each of them. Next, we compare each sequence (each
‘patient’) with the 5 reference patterns using the Hamming distance d1, the Euclidean dis-
tance d2 and the Earth Mover’s distance d3. Table 9 illustrates the outcome for M = 5
patients.
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Table 10 Success score and calculation of intermediate success averages

Case d1 d2 d3

1 1 1 1
2 1 0 1
3 1 1 0
4 1 0 1
5 0 1 0

sum 4 3 3

Table 11 Success averages representing distance performance for N = 10 collections of M = 5 runs

Block d1 d2 d3

1 4 3 3
2 5 2 1
3 4 2 3
4 4 4 3
5 3 4 3
6 3 3 3
7 5 3 2
8 4 1 3
9 4 5 2
10 5 3 3

Table 12 Distance rankings

Block d1 d2 d3

1 1 2 2
2 1 2 3
3 1 3 2
4 1 1 3
5 2 1 2
6 1 1 1
7 1 2 3
8 1 3 2
9 2 1 3
10 1 2 2

Now, we create an intermediate NM × 3 success score table R:

Rij =

⎧
⎨

⎩
1 when distance j selects the correct reference pattern for patient i,

0 otherwise,

and reduce dimensionality calculating N intermediate averages for consecutive blocks of
M patients. For the first 5 patients, we find Table 10, where the last row is obtained adding
up each column. The last row becomes the first row of a N × 3 performance matrix. Re-
peating this process for N = 10 consecutive blocks of M = 5 patients we find the perfor-
mance matrix collected in Table 11.

From the performance matrix, we construct the table of rankings, see Table 12. For each
row, the distance that scores a higher number of correct assignations ranks first, the next
one ranks second, and so on. Distances with the same number of correct guesses are tied.



Carpio et al. Journal of Mathematics in Industry            (2022) 12:3 Page 23 of 24

Table 13 Probabilities for each distance

Hamming Euclidean EMD

0.7452619 0.3127958 0.10000000

This ranking2 is introduced in the R package [23] to find the worths and tie preva-
lences involved in formulas (9) and (10). We have implemented this procedure for different
choices of M and N . Setting M = 20 and N = 15, for instance, we have found the worths
α1 = 0.79739001, α2 = 0.13612835 α3 = 0.06648164 and tie prevalences δ2 = 0.57440580,
δ3 = 0.79125103. The probability of each distance being the best is the sum of the prob-
abilities of that distance being the first alone, tied with another one or in a triple tie. We
obtain for each of them the probabilities listed in Table 13.

Notice that the probabilities in Table 13 do not add to one because the probabilities of
2-ties and 3-ties are counted twice and three times. In any case, the Hamming distance
clearly outperformed the rest for the synthetic dataset considered.

Alternatively, we can proceed as in the previous appendix, resorting to the PL method
with random tiebreaking and averaging. The resulting probabilities add up to one, and the
Hamming distance is still placed first.
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